×

Linear problem of integral geometry with smooth weight functions and perturbation. (Russian. English summary) Zbl 1467.44001

Summary: We study two problems of integral geometry in a strip on a family of line segments with a given weight function. In the first case, we consider the problem of reconstruction a function in a strip, if we know the integrals of the sought function on the family of line segments with a given weight function of a special kind. An analytical representation of a solution in the class of smooth finite functions is obtained and the uniqueness and existence theorems for a solution of the problem are proved. A stability estimate of solution in Sobolev spaces is presented, which implies its weakly ill-posedness. For the problem with perturbation the uniqueness theorem and stability estimate of solution were obtained. In the second case, we considered the problem of reconstructing a function given by integral data on the family of line segments with a weight function of exponential type. The uniqueness and existence theorems of a solution are proved. A simple representation of a solution in the class of smooth finite functions is constructed. Next, we consider the corresponding problem of integral geometry with perturbation. The uniqueness theorem in the class of smooth finite functions in a strip is proved and a stability estimate of a solution in Sobolev spaces is received.

MSC:

44A12 Radon transform
53C65 Integral geometry
65R10 Numerical methods for integral transforms
PDFBibTeX XMLCite
Full Text: MNR

References:

[1] Lavrentev M. M., “Zadacha integralnoi geometrii na ploskosti s vozmuscheniem”, #Sib. mat. zhurn., #37:4 (1996), 851-857 · Zbl 0874.53054
[2] Begmatov A. Kh., “Zadacha integralnoi geometrii s vozmuscheniem v trekhmernom prostranstve”, #Sib. mat. zhurn., #41:1 (2000), 3-14 · Zbl 0952.45001
[3] Begmatov A. Kh., “Ob odnoi zadache integralnoi geometrii s vozmuscheniem v trekhmernom prostranstve”, #Dokl. RAN, #371:2 (2000), 155-158 · Zbl 1081.53518
[4] Begmatov A. Kh., “Ob odnom klasse zadach integralnoi geometrii na ploskosti”, #Dokl. RAN, #331:3 (1993), 261-262 · Zbl 0822.53040
[5] Begmatov A. Kh., Petrova N. N., “Zadacha integralnoi geometrii s vozmuscheniem na krivykh ellipticheskogo tipa v polose”, #Dokl. AN, #436:2 (2011), 151-154 · Zbl 1235.53081
[6] Begmatov A. Kh., Dzhaikov G. M., “O vosstanovlenii funktsii po sfericheskim srednim”, #Dokl. AN VSh RF, #1:20 (2013), 6-16
[7] Nowack R. L., “Tomography and the Herglotz-Wiechert inverse formulation”, #Pure and Apllied Geophysics, #133 (1990), 305-315 · doi:10.1007/BF00877165
[8] Natterer F., #Matematicheskie aspekty kompyuternoi tomografii, Per. s angl. yaz., Mir, M., 1990, 288 pp. · Zbl 0733.92009
[9] Kabanikhin S. I., #Obratnye i nekorrektnye zadachi, Sib. nauch. izd-vo, Novosibirsk, 2009, 457 pp.
[10] Begmatov Akr. Kh., “Zadacha integralnoi geometrii dlya semeistva konusov v \(n\)-mernom prostranstve”, #Sib. mat. zhurn., #37:3 (1996), 500-505 · Zbl 0874.53053
[11] Begmatov A. Kh., Pirimbetov A. O., Seidullaev A. K., “Zadachi integralnoi geometrii v polose na semeistvakh parabolicheskikh krivykh”, #Dokl. AN VSh RF, #2:2(19) (2012), 6-15
[12] Begmatov A. H., Pirimbetov A. O., Seidullaev A. K., “Reconstruction stability in some problems of \(X\)-ray and seismic tomography”, #Proceedings of IFOST-2012, v. 2, Tomsk Polytechnic University, 2012, 261-266
[13] Begmatov A. H., “Integral geometry problems of Volterra type”, #Integral methods in science and engineering, Research Notes in Math. Ser., #418, eds. B. Bertram, C. Constanda, A. Struthers, Chapman Hall/CRC, Boka Raton, Fl, 2000, 46-50 · Zbl 0959.44003
[14] Lavrentev M. M., Romanov V. G., Shishatskii S. P., #Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 286 pp. · Zbl 0476.35001
[15] Begmatov A. Kh., “O edinstvennosti resheniya zadachi integralnoi geometrii volterroskogo tipa na ploskosti”, #Dokl. AN, #427:4 (2009), 439-441 · Zbl 1182.53073
[16] G. Krein (red.), #Funktsionalnyi analiz, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1972, 544 pp.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.