Ben Salah, I.; Khériji, L. On the natural \(q^2\)-analogue of the generalized Gegenbauer form. (English) Zbl 1314.33008 Transylv. J. Math. Mech. 6, No. 1, 59-68 (2014). Summary: The aim of this paper is to highlight a \(q^2\)-analogue of the generalized Gegenbauer polynomials orthogonal with respect to the form \(\mathcal{G}(\alpha,\beta,q^2)\). Integral representation and discrete measure of \(\mathcal{G}(\alpha,\beta,q^2)\) are given for some values of parameters. MSC: 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) 42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis Keywords:\(q\)-difference operator; \(H_q\)-semiclassical form; \(q\)-distributional equation; moments; discrete measure; integral representation PDF BibTeX XML Cite \textit{I. Ben Salah} and \textit{L. Khériji}, Transylv. J. Math. Mech. 6, No. 1, 59--68 (2014; Zbl 1314.33008) OpenURL