×

Limiting absorption principle and virtual levels of operators in Banach spaces. (English. French summary) Zbl 1485.35300

Summary: We review the concept of the limiting absorption principle and its connection to virtual levels of operators in Banach spaces.

MSC:

35P05 General topics in linear spectral theory for PDEs
47A40 Scattering theory of linear operators
47B01 Operators on Banach spaces
78A45 Diffraction, scattering
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Amaldi, E.; Fermi, E., On the absorption and the diffusion of slow neutrons, Phys. Rev., 50, 899-928 (1936)
[2] Akhiezer, NI; Glazman, IM, Theory of linear operators in Hilbert space (volumes I and II) (1981), Edinburgh: London and Scottish Academic Press, Edinburgh · Zbl 0467.47001
[3] S. Agmon, Spectral properties of Schrödinger operators, in Actes, Congrès intern. Math., vol. 2, pp. 679-683, 1970. · Zbl 0228.47031
[4] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), pp. 151-218. · Zbl 0315.47007
[5] S. Agmon, On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, in Methods of Functional Analysis and Theory of Elliptic Equations, pp. 19-52, Liguori Editore, Naples, 1982. · Zbl 0595.58044
[6] Agmon, S., A perturbation theory of resonances, Communications on Pure and Applied Mathematics, 51, 1255-1309 (1998) · Zbl 0941.47008
[7] D. Apushkinskaya and A. Nazarov, “Cherish the footprints of Man on the sand of Time!” (V.I. Smirnov), Algebra i Analiz 30 (2018), pp. 3-17.
[8] M. Ben-Artzi and A. Devinatz, The limiting absorption principle for partial differential operators, Mem. Amer. Math. Soc. 66 (1987), pp. iv+70. · Zbl 0624.35068
[9] S. Barth, A. Bitter, and S. Vugalter, On the Efimov effect in systems of one- or two-dimensional particles (2020), · Zbl 1486.81106
[10] N. Boussaïd and A. Comech, Nonlinear Dirac equation. Spectral stability of solitary waves, vol. 244 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2019. · Zbl 1442.35001
[11] N. Boussaïd and A. Comech, Virtual levels and virtual states of linear operators in Banach spaces. Applications to Schrödinger operators (2021),
[12] Y. M. Berezanskii, Eigenfunction expansions of self-adjoint operators, Mat. Sb. (N.S.) 43 (85) (1957), pp. 75-126. · Zbl 0079.13604
[13] Bollé, D.; Gesztesy, F.; Danneels, C., Threshold scattering in two dimensions, Ann. Inst. H. Poincaré Phys. Théor., 48, 175-204 (1988) · Zbl 0696.35040
[14] D. Bollé, F. Gesztesy, and M. Klaus, Scattering theory for one-dimensional systems with \(\int dx\,V(x)=0\), J. Math. Anal. Appl. 122 (1987), pp. 496-518. · Zbl 0617.35105
[15] Bollé, D.; Gesztesy, F.; Wilk, SFJ, A complete treatment of low-energy scattering in one dimension, J. Operator Theory, 13, 3-31 (1985) · Zbl 0567.47008
[16] M. S. Birman, On the theory of self-adjoint extensions of positive definite operators, Matematicheskii Sbornik 80 (1956), pp. 431-450. · Zbl 0070.12102
[17] M. S. Birman, On the spectrum of singular boundary-value problems, Mat. Sb. (N.S.) 55 (97) (1961), pp. 125-174. · Zbl 0104.32601
[18] Boussaïd, N., Stable directions for small nonlinear Dirac standing waves, Comm. Math. Phys., 268, 757-817 (2006) · Zbl 1127.35060
[19] Boussaïd, N., On the asymptotic stability of small nonlinear Dirac standing waves in a resonant case, SIAM J. Math. Anal., 40, 1621-1670 (2008) · Zbl 1167.35438
[20] Browder, FE, On the spectral theory of elliptic differential operators, I, Mathematische Annalen, 142, 22-130 (1961) · Zbl 0104.07502
[21] T. Carleman, Sur la théorie mathématique de l’équation de Schrödinger, Almqvist & Wiksell, 1934. · Zbl 0009.35702
[22] Chiarenza, F.; Fabes, E.; Garofalo, N., Harnack’s inequality for Schrödinger operators and the continuity of solutions, Proceedings of the American Mathematical Society, 98, 415-425 (1986) · Zbl 0626.35022
[23] S. Cuccagna and D. Pelinovsky, Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem, J. Math. Phys. 46 (2005), pp. 053520, 15. · Zbl 1110.35082
[24] Devyver, B., A spectral result for Hardy inequalities, Journal de Mathématiques Pures et Appliquées, 102, 813-853 (2014) · Zbl 1314.47021
[25] Erdoğan, MB; Green, WR, The Dirac equation in two dimensions: dispersive estimates and classification of threshold obstructions, Comm. Math. Phys., 352, 719-757 (2017) · Zbl 1364.35301
[26] Erdoğan, MB; Green, WR; Toprak, E., Dispersive estimates for Dirac operators in dimension three with obstructions at threshold energies, American Journal of Mathematics, 141, 1217-1258 (2019) · Zbl 1428.35432
[27] Eidus, DM, The principle of limit absorption, Math. Sb., 57, 13-44 (1962) · Zbl 0133.05101
[28] Eidus, DM, The principle of limit amplitude, Uspekhi Mat. Nauk, 24, 91-156 (1969) · Zbl 0177.14201
[29] Erdoğan, MB; Schlag, W., Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I, Dyn. Partial Differ. Equ., 1, 359-379 (2004) · Zbl 1080.35102
[30] Faddeev, LD, Mathematical questions in the quantum theory of scattering for a system of three particles, Trudy Mat. Inst. Steklov., 69, 122 (1963) · Zbl 0125.21502
[31] Fermi, E., On the recombination of neutrons and protons, Physical Review, 48, 570 (1935) · Zbl 0012.32504
[32] Gelfand, I.; Kostyuchenko, A., Eigenfunction expansions of differential and other operators, Dokl. Akad. Nauk, 103, 349-352 (1955) · Zbl 0065.10402
[33] J. Ginibre and M. Moulin, Hilbert space approach to the quantum mechanical three-body problem, Ann. Inst. H. Poincaré Sect. A (N.S.) 21 (1974), pp. 97-145. · Zbl 0311.47003
[34] Gesztesy, F.; Nichols, R., On absence of threshold resonances for Schrödinger and Dirac operators, Discrete Contin. Dyn. Syst. S, 13, 3427-3460 (2020) · Zbl 1459.35107
[35] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, vol. 224 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1983, second edn. · Zbl 0562.35001
[36] G. S. Guseinov, On the concept of spectral singularities, Pramana - J. Phys. 73 (2009), pp. 587-603.
[37] Gelfand, IM; Vilenkin, NY, Some problems of harmonic analysis (1961), Fizmatgiz, Moscow: Rigged Hilbert Spaces, Fizmatgiz, Moscow
[38] F. Gesztesy and Z. Zhao, On critical and subcritical Sturm-Liouville operators, J. Functional Analysis 98 (1991), pp. 311-345. · Zbl 0726.35119
[39] E. Hille, Jacob David Tamarkin - His life and work, Bull. Amer. Math. Soc. 53 (1947), pp. 440-457. · Zbl 0031.09911
[40] Howland, JS, Puiseux series for resonances at an embedded eigenvalue, Pacific J. Math., 55, 157-176 (1974) · Zbl 0312.47010
[41] Ignatowsky, W., Reflexion elektromagnetischer Wellen an einem Draft, Ann. Phys., 18, 495-522 (1905) · JFM 36.0938.02
[42] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions results in \({L}^2({\mathbf{R}}^m), m\ge 5\), Duke Math. J. 47 (1980), pp. 57-80. · Zbl 0437.47009
[43] A. Jensen, Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in \({L}^2({\bf R }^4)\), J. Math. Anal. Appl. 101 (1984), pp. 397-422. · Zbl 0564.35024
[44] Jensen, A.; Kato, T., Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46, 583-611 (1979) · Zbl 0448.35080
[45] Jensen, A.; Nenciu, G., A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., 13, 717-754 (2001) · Zbl 1029.81067
[46] Kwon, Y.; Lee, S., Sharp resolvent estimates outside of the uniform boundedness range, Communications in Mathematical Physics, 374, 1417-1467 (2020) · Zbl 1444.35032
[47] V. V. Konotop, E. Lakshtanov, and B. Vainberg, Designing lasing and perfectly absorbing potentials, Phys. Rev. A 99 (2019), p. 043838.
[48] Krein, M., On a general method of decomposing Hermite-positive nuclei into elementary products, Dokl. Akad. Nauk, 53, 3-6 (1946) · Zbl 0063.03359
[49] Krein, M., The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications, I, Matematicheskii Sbornik, 62, 431-495 (1947) · Zbl 0029.14103
[50] M. Krein, On hermitian operators with directed functionals, Akad. Nauk Ukrain. RSR. Zbirnik Prac Inst. Mat 10 (1948), pp. 83-106.
[51] S. T. Kuroda, An introduction to scattering theory, vol. 51 of Lecture Notes Series, Aarhus Universitet, Matematisk Institut, Aarhus, 1978. · Zbl 0407.47003
[52] Landau, H., On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels, Journal d’Analyse Mathématique, 28, 335-357 (1975) · Zbl 0321.45005
[53] V. Ljance, On differential operators with spectral singularities, in Seven Papers on Analysis, vol. 60 of Amer. Math. Soc. Transl. Ser. 2, pp. 185-225, Amer. Math. Soc., Providence, RI, 1967.
[54] M. Lucia and S. Prashanth, Criticality theory for Schrödinger operators with singular potential, J. Differential Equations 265 (2018), pp. 3400-3440. · Zbl 1396.35006
[55] M. Lucia and S. Prashanth, Addendum to “Criticality theory for Schrödinger operators with singular potential” [J. Differ. Equ. 265 (2018) 3400-3440], J. Differential Equations 269 (2020), pp. 7211-7213. · Zbl 1442.35085
[56] M. Murata, Structure of positive solutions to \((-{\Delta }+{V}) u= 0\) in \({\mathbb{R}}^n \) · Zbl 0692.35038
[57] B. Nagy, Operators with spectral singularities, Journal of Operator Theory (1986), pp. 307-325. · Zbl 0649.47028
[58] Naimark, MA, Investigation of the spectrum and the expansion in eigenfunctions of a nonselfadjoint operator of the second order on a semi-axis, Tr. Mosk. Mat. Obs., 3, 181-270 (1954) · Zbl 0056.31102
[59] B. S. Pavlov, On a non-selfadjoint Schrödinger operator, in Problems of Mathematical Physics, No. 1, Spectral Theory, Diffraction Problems (Russian), pp. 102-132, Izdat. Leningrad. Univ., Leningrad, 1966. · Zbl 0171.08602
[60] Pinchover, Y., On positive solutions of second-order elliptic equations, stability results, and classification, Duke Math. J., 57, 955-980 (1988) · Zbl 0685.35035
[61] Pinchover, Y., On criticality and ground states of second order elliptic equations, II, J. Differential Equations, 87, 353-364 (1990) · Zbl 0714.35055
[62] Pinchover, Y., Large time behavior of the heat kernel and the behavior of the Green function near criticality for nonsymmetric elliptic operators, J. Funct. Anal., 104, 54-70 (1992) · Zbl 0763.35026
[63] Pinchover, Y., Large time behavior of the heat kernel, J. Funct. Anal., 206, 191-209 (2004) · Zbl 1037.58019
[64] A. Y. Povzner, On M.G. Krein’s method of directing functionals, Zapiski Inst. Mat. Meh. Harkov Gos. Univ. and Harkov. Mat. Obs. 28 (1950), pp. 43-52.
[65] A. Y. Povzner, On the expansion of arbitrary functions in characteristic functions of the operator \(-\Delta u+cu\), Mat. Sb. (N.S.) 32(74) (1953), pp. 109-156. · Zbl 0050.32201
[66] Pinchover, Y.; Tintarev, K., A ground state alternative for singular Schrödinger operators, J. Funct. Anal., 230, 65-77 (2006) · Zbl 1086.35025
[67] Y. Pinchover and K. Tintarev, Ground state alternative for \(p\)-Laplacian with potential term, Calc. Var. Partial Differential Equations 28 (2007), pp. 179-201. · Zbl 1208.35032
[68] Rauch, J., Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys., 61, 149-168 (1978) · Zbl 0381.35023
[69] P. A. Rejto, On partly gentle perturbations. III, J. Math. Anal. Appl. 27 (1969), pp. 21-67. · Zbl 0201.13501
[70] Schwartz, J., Some non-selfadjoint operators, Comm. Pure Appl. Math., 13, 609-639 (1960) · Zbl 0096.08901
[71] Schwinger, J., Field theory of unstable particles, Annals of Physics, 9, 169-193 (1960) · Zbl 0089.44902
[72] B. Simon, Resonances in \(n\)-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory, Ann. of Math. (2) 97 (1973), pp. 247-274. · Zbl 0252.47009
[73] Simon, B., The bound state of weakly coupled Schrödinger operators in one and two dimensions, Ann. Physics, 97, 279-288 (1976) · Zbl 0325.35029
[74] B. Simon, Large time behavior of the \(l^p\) norm of Schrödinger semigroups, Journal of Functional analysis 40 (1981), pp. 66-83. · Zbl 0478.47024
[75] V. Smirnov, Course of higher mathematics, vol. 4, OGIZ, Leningrad, Moscow, 1941, 1 edn. · Zbl 0063.07088
[76] V. I. Smirnov, A Course of Higher Mathematics: Vol. 4, Integral Equations and Partial Differential Equations, Pergamon Press, 1964. · Zbl 0143.13204
[77] Sommerfeld, A., Die Greensche Funktion der Schwingungslgleichung, Jahresbericht der Deutschen Mathematiker-Vereinigung, 21, 309-353 (1912) · JFM 43.0819.01
[78] A. J. W. Sommerfeld, Partielle Differetialgleichungen der Physik, Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1948, 2 edn.
[79] Sveshnikov, A., Radiation principle, Dokl. Akad. Nauk, 73, 917-920 (1950) · Zbl 0040.41903
[80] Titchmarsh, E., Eigenfunction expansions associated with second-order differential equations (1946), Oxford: Clarendon Press, Oxford · Zbl 0061.13505
[81] Tikhonov, A.; Samarskii, A., On the radiation principle, Zh. Eksper. Teoret. Fiz., 18, 243-248 (1948)
[82] A. Tikhonov and A. Samarskii, Equations of Mathematical Physics, Gostekhizdat, Moscow, 1951, 1 edn. · Zbl 0044.09302
[83] P. Takáč and K. Tintarev, Generalized minimizer solutions for equations with the \(p\)-Laplacian and a potential term, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 138 (2008), pp. 201-221. · Zbl 1133.49016
[84] Vainberg, B., Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations, Russian Mathematical Surveys, 21, 115-193 (1966) · Zbl 0172.13703
[85] B. R. Vainberg, On the analytical properties of the resolvent for a certain class of operator-pencils, Mat. Sb. (N.S.) 119 (1968), pp. 259-296. · Zbl 0164.13503
[86] B. R. Vainberg, On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as \(t\rightarrow \infty\) of solutions of non-stationary problems, Russian Mathematical Surveys 30 (1975), p. 1. · Zbl 0318.35006
[87] V. P. Vizgin and G. E. Gorelik, The reception of the Theory of Relativity in Russia and the USSR, in The comparative reception of relativity, pp. 265-326, Springer, 1987.
[88] Vishik, MI, On general boundary problems for elliptic differential equations, Tr. Mosk. Mat. Obs., 1, 187-246 (1952) · Zbl 0047.09502
[89] Weidl, T., Remarks on virtual bound states for semi-bounded operators, Comm. Partial Differential Equations, 24, 25-60 (1999) · Zbl 0926.47009
[90] Weyl, H., Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Mathematische Annalen, 68, 220-269 (1910) · JFM 41.0343.01
[91] Wigner, EP, Über die Streuung von Neutronen an Protonen, Zeitschrift für Physik, 83, 253-258 (1933) · JFM 59.1565.06
[92] D. R. Yafaev, On the theory of the discrete spectrum of the three-particle Schrödinger operator, Mat. Sb. (N.S.) 23 (1974), pp. 535-559. · Zbl 0342.35041
[93] D. R. Yafaev, The virtual level of the Schrödinger equation, in Mathematical questions in the theory of wave propagation, 7, vol. 51, pp. 203-216, Nauka, St. Petersburg, 1975. · Zbl 0347.35028
[94] Yafaev, DR, Scattering subspaces and asymptotic completeness for the time-dependent Schrödinger equation, Mathematics of the USSR-Sbornik, 46, 267-283 (1983) · Zbl 0522.35070
[95] D. R. Yafaev, Mathematical scattering theory, vol. 158 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2010. · Zbl 1197.35006
[96] K. Yajima, Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys. 259 (2005), pp. 475-509. · Zbl 1079.81021
[97] O. Yamada, On the principle of limiting absorption for the Dirac operator, Publ. Res. Inst. Math. Sci. 8 (1972/73), pp. 557-577. · Zbl 0257.35009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.