Ba, Demba Bocar On the fractional Brownian motion: Hansdorff dimension and Fourier expansion of fractional Brownian motion. (English) Zbl 1425.60037 Int. J. Adv. Appl. Math. Mech. 5, No. 2, 53-59 (2017). Summary: In this paper, we determine the Hansdorff dimension by using the cantor Set and we give the Fourier expansion of fractional Brownian motion with \(0 < H \leq\frac12\). Cited in 1 Document MSC: 60G22 Fractional processes, including fractional Brownian motion 60G17 Sample path properties 28A80 Fractals Keywords:Hansdorff dimension; Cantor set; Brownian motion PDF BibTeX XML Cite \textit{D. B. Ba}, Int. J. Adv. Appl. Math. Mech. 5, No. 2, 53--59 (2017; Zbl 1425.60037) Full Text: Link OpenURL References: [1] R.J Adler, G. Samorodnitsky, Super fractional Brownian motion, fractional super Brownian motion and related self-similar(super) processes, Ann.Prob. 23 (1995) 743-766. [2] E. Alos, O. Mazet, D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst param [3] E. Alos, D. Nualart, Stochastic integration with respect to the fractional Brownian motion, Stoch. Rep. 75 (2002) 129-152. [4] B.B. Mandelbrot, J. Van Ness fractional Brownian motion, Fractional Noises and Applications, Sia, Review; 10:422437, 1968. [5] P. Carmona, L. Coutin, Integrale stochastique pour le mouvement borwnien fractionnaire, C. R. Acad. Sci. Paris Ser. I Math. 330 (2000) 231-236. [6] P. Cheridito, Regularizing fractional Brownian motion with a view towards stock price modelling, PhD thesis, Zurich, 2001. [7] L. Decreusefond, Stochastic integration with respect to fractional Brownian motion, In: Doukhan, P., Oppenheim, G., Taqqu. M. (eds) Theory and Applications of Long-Range Dependence, Birkhauser, Boston (2003) 203-225. [8] L. Decreusefond, A.S. Ustuneln, Application du calcul des variations stochastiques au mouvement brownien fractionnaire, C.R. Acad. Sci. Paris Ser. I Mathy. 321 (1995) 1605-1608. [9] L. Decreusefond, A.S. Ustuneln, Stochatic analusis of the fractional Brownian motion, Potential Analysis 10 (1999) 177-214. [10] K. Dzhaparidze, H. Van Zanten, Krein’s spectral theory and the Paley-Wiener expansion for fractional Brownian motion, Ann. Prob. 33 (2005) 620-644. [11] V.V. Gorodeckii, On convergence to semi-stable Gaussian processes, Theory Prob. Appl. 22 (1978) 498-508. [12] P. Malliavin, Stochastic Analysis Springer, Berlin, 1997. [13] B.B. Mandelbrot, Fractals and Scaling i, Finance Discontinuity, Concentration, Risk. Springer, New York, 1997. [14] S. Leger, M. Pontier, Drap brownien fractionnaire, Cr. Acad. Sc. Paris, Série I, 329 (1999) 893-898. [15] Serge Cohen, Fractional fields and Applications, Springer, 2015. [16] M. Taqq, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahr. verw. Gebiete 31 (1975) 287-302. [17] Yuliya S. Mishura Stochastic Calculus for Fractional brownian Motion and Related, Springer, 2008. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.