Murali, R.; Deboral, M.; Raj, A. Antony A fixed point approach to orthogonal stability of an additive-cubic functional equation. (English) Zbl 1367.39005 Int. J. Adv. Appl. Math. Mech. 3, No. 4, 1-8 (2016). Summary: Using fixed point method, we prove the Hyers-Ulam stability of the orthogonally additive-cubic functional equation \[ f(2x+y)+f(2x-y)-f(4x)=2f(x+y)+2f(x-y)-8f(2x)+10f(x)-2f(-x) \] for all \(x\), \(y\) with \(x \bot y\). MSC: 39B22 Functional equations for real functions 39B55 Orthogonal additivity and other conditional functional equations 39B82 Stability, separation, extension, and related topics for functional equations Keywords:Hyers-Ulam stability; additive and cubic functional equations; fixed point method; orthogonality space PDF BibTeX XML Cite \textit{R. Murali} et al., Int. J. Adv. Appl. Math. Mech. 3, No. 4, 1--8 (2016; Zbl 1367.39005) Full Text: Link OpenURL