×

Solvability of the Showalter-Sidorov problem for Sobolev type equations with operators in the form of first-order polynomials from the Laplace-Beltrami operator on differential forms. (English) Zbl 1458.76106

Summary: We consider solvability of the Showalter-Sidorov problem for the Barenblatt-Zheltov-Kochina equations and the Hoff linear equation. The equations are linear representatives of the class of linear Sobolev type equations with an irreversible operator under derivative. We search for a solution to the problem in the space of differential \(k\)-forms defined on a Riemannian manifold without boundary. Both equations are the special cases of an equation with operators in the form of polynomials of the first degree from the Laplace-Beltrami operator, generalizing the Laplace operator in spaces of differential \(k\)-forms up to a sign. Applying the Sviridyuk theory and the Hodge-Kodaira theorem, we prove an existence of the subspace in which there exists a unique solution to the problem.

MSC:

76S05 Flows in porous media; filtration; seepage
35Q35 PDEs in connection with fluid mechanics
53Z05 Applications of differential geometry to physics

References:

[1] G. I. Barenblatt, Yu. P. Zheltov, I. N. Kochina, “Basic Concepts in the Theory of Seepage of Homogeneous Fluids in Fissurized Rocks [Strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286-1303 · Zbl 0104.21702 · doi:10.1016/0021-8928(60)90107-6
[2] N. A. Hoff, “Greep buckling”, Journal of the Aeronautical Sciences, 7:1 (1965), 1-20
[3] G. A. Sviridyuk, N. A. Manakova, “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera-Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:1 (2014), 90-103 · Zbl 1303.60060 · doi:10.14529/mmp140108
[4] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera-Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 3:1 (2010), 104-125 · Zbl 1260.35074
[5] F. Warner, Foundations of Differentiable Manifolds and Lie Groups, v. 94, Graduate Texts in Mathematics, Springer-Verlag, 1983 · Zbl 0516.58001 · doi:10.1007/978-1-4757-1799-0
[6] D. E. Shafranov, A. I. Shvedchikova, “Uravnenie Khoffa kak model uprugoi obolochki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 12, 77-81 · Zbl 1413.35135
[7] A.A. Zamyshlyaeva, Dzh.K.T. Al-Isavi, “O nekotorykh svoistvakh reshenii odnogo klassa evolyutsionnykh matematicheskikh modelei sobolevskogo tipa v kvazisobolevykh prostranstvakh”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:4 (2015), 113-119 (in English) · Zbl 1344.47026
[8] M. A. Sagadeeva, F. L. Hasan, “Bounded solutions of Barenblatt-Zheltov-Kochina model in quasi-Sobolev spaces”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 8:4 (2015), 138-144 · Zbl 1344.47028 · doi:10.14529/mmp150414
[9] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, v. 42, Inverse and Ill-Posed Problems Series, de Gruyer, 2012, 216+viii pp. · doi:10.1515/9783110915501
[10] A. A. Dezin, Mnogomernyi analiz i diskretnye modeli, Nauka, Novosibirsk, 1990 · Zbl 0704.39005
[11] K. Maurin, Metody Przestrzeni Hilberta, Państwowe Wydawnictwo Naukowe, Warsawa, 1959 · Zbl 0086.30901
[12] R. Palais, Seminar on the Atiyah-Singer Index Theorem, Princeton University Press, Princeton, 1965 · Zbl 0137.17002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.