Aliev, Rashid A.; Amrahova, Aynur F. On the summability of the discrete Hilbert transform. (English) Zbl 07255652 Ural Math. J. 4, No. 2, 6-12 (2018). Summary: In this paper, we study the asymptotic behavior of the distribution function of the discrete Hilbert transform of sequences from the class \(l_1\) and find a necessary condition and a sufficient condition for the summability of the discrete Hilbert transform of a sequence from the class \(l_1\). Cited in 2 Documents MSC: 47Bxx Special classes of linear operators 44Axx Integral transforms, operational calculus 47Axx General theory of linear operators Keywords:discrete Hilbert transform; asymptotic behavior of distribution function; class of summable sequences PDF BibTeX XML Cite \textit{R. A. Aliev} and \textit{A. F. Amrahova}, Ural Math. J. 4, No. 2, 6--12 (2018; Zbl 07255652) Full Text: DOI MNR OpenURL References: [1] Andersen K.F., “Inequalities with weights for discrete Hilbert transforms”, Canad. Math. Bul., 20 (1977), 9-16 · Zbl 0424.47021 [2] Belov Y., Mengestie T.Y., Seip K., “Discrete Hilbert transforms on sparse sequences”, Proc. London Math. Soc., 103:1 (2011), 73-105 · Zbl 1234.30030 [3] Belov Y., Mengestie T.Y., Seip K., “Unitary discrete Hilbert transforms”, J. Anal. Math., 112 (2010), 383-393 · Zbl 1300.47042 [4] De Carli L., Samad S., “One-parameter groups and discrete Hilbert transform”, Canad. Math. Bull., 59 (2016), 497-507, arXiv: 506.03362 [math.FA]. · Zbl 1350.42010 [5] Gabisonija I., Meskhi A., “Two weighted inequalities for a discrete Hilbert transform”, Proc. A. Razmadze Math. Inst., 116 (1998), 107-122 · Zbl 0924.42017 [6] Hunt R., Muckenhoupt B., Wheeden R., “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176:2 (1973), 227-251 · Zbl 0262.44004 [7] Laeng E., “Remarks on the Hilbert transform and some families of multiplier operators related to it”, Collect. Math., 58:1 (2007), 25-44 · Zbl 1135.42006 [8] Liflyand E., “Weighted Estimates for the Discrete Hilbert Transform.”, Methods of Fourier Analysis and Approximation Theory. Applied and Numerical Harmonic Analysis, eds. M. Ruzhansky, S. Tikhonov. Cham: Birkhäuser, 2016, 59-69 · Zbl 1342.42008 [9] Rakotondratsimba Y., “Two weight inequality for the discrete Hilbert transform”, Soochow J. Math., 25: 4 (1999), 353-373 · Zbl 0959.42005 [10] Riesz M., “Sur les fonctions conjuguees”, Math. Z., 27 (1928), 218-244 · JFM 53.0259.02 [11] Stepanov V.D., Tikhonov S.Yu., “Two weight inequalities for the Hilbert transform of monotone functions”, Dokl. Math., 83:2 (2011), 241-242 · Zbl 1253.26034 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.