Antal, Reena; Chawla, Meenakshi; Kumar, Vijay Some remarks on rough statistical \(\Lambda \)-convergence of order \(\alpha \). (English) Zbl 1485.40004 Ural Math. J. 7, No. 1, 16-25 (2021). Summary: The main purpose of this work is to define rough statistical \(\Lambda \)-convergence of order \(\alpha\) \((0<\alpha\leq1)\) in normed linear spaces. We have proved some basic properties and also provided some examples to show that this method of convergence is more generalized than the rough statistical convergence. Further, we have shown the results related to statistically \(\Lambda \)-bounded sets of order \(\alpha\) and sets of rough statistically \(\Lambda \)-convergent sequences of order \(\alpha \). MSC: 40A35 Ideal and statistical convergence 40J05 Summability in abstract structures 46B99 Normed linear spaces and Banach spaces; Banach lattices Keywords:statistical convergence; rough statistical convergence; rough statistical limit points PDF BibTeX XML Cite \textit{R. Antal} et al., Ural Math. J. 7, No. 1, 16--25 (2021; Zbl 1485.40004) Full Text: DOI MNR OpenURL References: [1] Alotaibi A., Mursaleen M., “A-statistical summability of Fourier Series and Walsh-Fourier series”, Appl. Math. Inf. Sci., 6:3 (2012), 535-538 [2] Aytar S., “Rough statistical convergence”, Numer. Funct. Anal. Optim., 29:3-4 (2008), 291-303 · Zbl 1159.40002 [3] Chawla M., Saroa M. S., Kumar V., “On \(\Lambda \)-statistical convergence of order \(\alpha\) in random 2-normed space”, Miskolc Math. Notes, 16:2 (2015), 1003-1015 · Zbl 1349.40015 [4] Çolak R., Bekta{ş} {Ç}. A., “\( \lambda \)-statistical convergence of order \(\alpha \)”, Acta Math. Sci. Ser. B Engl. Ed., 31:3 (2011), 953—959 · Zbl 1240.40016 [5] Fast H., “Sur la convergence statistique”, Colloq. Math., 2:3-4 (1951), 241-244 · Zbl 0044.33605 [6] Fridy J. A., “Statistical limit points”, Proc. Amer. Math. Soc., 118:4 (1993), 1187-1192 · Zbl 0776.40001 [7] Gadjiev A. D., Orhan C., “Some approximation theorems via statistical convergence”, Rocky Mountain J. Math., 32:1 (2002), 129-138 · Zbl 1039.41018 [8] Karakus S., “Statistical convergence on probalistic normed spaces”, Math. Commun., 12:1 (2007), 11-23 · Zbl 1158.40001 [9] Karakus S., Demirci K., Duman O., “Statistical convergence on intuitionistic fuzzy normed spaces”, Chaos Solitons Fractals, 35:4 (2008), 763-769 · Zbl 1139.54006 [10] Maddox I. J., “Statistical convergence in locally convex space”, Math. Proc. Cambridge Philos. Soc., 104:1 (1988), 141-145 · Zbl 0674.40008 [11] Maity M., A Note on Rough Statistical Convergence., 2016, 5 pp., arXiv: · Zbl 1371.40008 [12] Maity M., A Note on Rough Statistical Convergence of Order \(\alpha , 2016, 7\) pp., arXiv: · Zbl 1371.40008 [13] Malik P., Maity M., “On rough convergence of double sequence in normed linear spaces”, Bull. Allahabad Math. Soc., 28:1 (2013), 89-99 · Zbl 1300.40005 [14] Malik P., Maity M., “On rough statistical convergence of double sequences in normed linear spaces”, Afr. Mat., 27:1-2 (2016), 141—148 · Zbl 1359.40004 [15] Malik P., Maity M., Ghosh A., Rough I-statistical Convergence of Sequences, 2016, 21 pp., arXiv: · Zbl 1463.40027 [16] Miller H. I., “A measure theoretical subsequence characterization of statistical convergence”, Trans. Amer. Math. Soc., 347:5 (1995), 1811-1819 · Zbl 0830.40002 [17] Mursaleen M., Noman A. K., “On the spaces of \(\lambda \)-convergent and bounded sequences”, Thai J. Math., 8:2 (2012), 311-329 · Zbl 1218.46005 [18] Pal S. K., Chandra D., Dutta S., “Rough ideal convergence”, Hacet. J. Math. Stat., 42:6 (2013), 633-640 · Zbl 1310.40007 [19] Phu H. X., “Rough convergence in normed linear spaces”, Numer. Funct. Anal. Optim., 22:1-2 (2001), 199-222 · Zbl 0986.46012 [20] Phu H. X., “Rough convergence in infinite dimensional normed spaces”, Numer. Func. Anal. Optim., 24:3-4 (2003), 285-301 · Zbl 1029.46005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.