## On $$\Lambda$$-convergence almost everywhere of multiple trigonometric Fourier series.(English)Zbl 1450.42001

Let $$\Lambda=\{\lambda_{ \nu}\}_{\nu=1}^{\infty}$$ be a nonincreasing sequence of positive numbers. Set $\Omega_{\Lambda}=\{\mathfrak{n}=(n^1, n^2, \dots, n^d)\in\mathbb{N}^d:\, \frac{1}{1+\lambda_{n^i}}\leq \frac{n^i}{n^j}\leq 1+\lambda_{n^j}, \,\, 1\leq i, j\leq d\}.$ We will say that a multiple Fourier series of a function $$f\in L(\mathfrak{T}^d)$$ is $$\Lambda$$-convergent at a point $$\mathfrak{x}\in\mathfrak{T}^d$$ if there exists a limit $\lim_{\mathfrak{n} \in \Omega_{\Lambda},\,\min\{n^j: 1\leq j \leq d\}\to \infty } S_{\mathfrak{n}}(f, \mathfrak{x}),$ where $$S_{\mathfrak{n}}(f,\mathfrak{x})$$ are the rectangular partial sums of the trigonometric Fourier series of $$f$$.
It is clear that $$\Lambda$$-convergence is a generalization of the classical $$\lambda$$-convergence ($$\lambda>1$$) and that it is stronger than convergence over cubes. Earlier the author [Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 14, No. 4, Part 2, 497–505 (2014; Zbl 1310.42003)] proved that if a sequence $$\Lambda=\{\lambda_{\nu}\}_{\nu=1}^{\infty}$$ satisfies the condition $$\ln^2\lambda_{\nu}=o(\ln \nu)$$ as $$\nu \to \infty,$$ then there exists a function $$F\in C(\mathfrak{T}^2)$$ such that its Fourier series is $$\Lambda$$-divergent almost everywhere on $$\mathfrak{T}^2$$.
In the present paper it is established that if $$d\geq 2$$ and $$\lambda_{\nu}=O (1/\nu)$$ then the Fourier series of any function from the class $L(\ln+ L)^d(\ln^+ \ln^+ \ln^+ L)(\mathfrak{T}^d)$ is $$\Lambda$$-convergent almost everywhere on $$\mathfrak{T}^d$$.

### MSC:

 42A20 Convergence and absolute convergence of Fourier and trigonometric series

Zbl 1310.42003
Full Text:

### References:

 [1] Luzin N. N., Integral and trigonometric series, GITTL, Moscow - Leningrad:, 1951, 550 pp. (in Russian) · JFM 48.1368.01 [2] Kolmogoroff A., “Une série de Fourier - Lebesgue divergente preque partout”, Fund. math., 4 (1923), 324-328 · JFM 49.0205.02 [3] Kolmogoroff A., “Une série de Fourier - Lebesgue divergente partout”, C. r. Acad. sci. Paris, 183 (1926), 1327-1329 · JFM 52.0269.02 [4] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta math., 116:1-2 (1966), 135-157 · Zbl 0144.06402 [5] Hunt R.A., “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues., SIU Press, Carbondale, Illinois, 1968, 235-255 [6] Sjölin P., “An inequality of Paley and convergence a.e. of Walsh-Fourier series”, Arkiv för mat., 7 (1969), 551-570 · Zbl 0169.08203 [7] Antonov N. Yu., “Convergence of Fourier series”, East Journal on Approximations, 2:2 (1996), 187-196 · Zbl 0919.42004 [8] Konyagin S. V., “On everywhere divergence of trigonometric Fourier series”, Sb. Math., 191:1 (2000), 97-120 · Zbl 0967.42004 [9] Tevzadze N.R., “The convergence of the double Fourier series of a square integrable function”, Soobshch. AN GSSR, 58:2 (1970), 277-279 (in Russian) [10] Fefferman C., “On the convergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:5 (1971), 744—745 · Zbl 0234.42008 [11] Sjölin P., “Convergence almost everywhere of ertain singular integrals and multiple Fourier series”, Arkiv för mat., 9:1 (1971), 65-90 · Zbl 0212.41703 [12] Antonov N. Yu., “Almost everywhere convergence over cubes of multiple trigonometric Fourier series”, Izv. Math., 68:2 (2004), 223-241 · Zbl 1062.42004 [13] Antonov N. Yu., “On the almost everywhere convergence of sequences of multiple rectangular Fourier sums”, Proc. Steklov Inst. Math., 264:Suppl. 1 (2009), S1-S18 · Zbl 1312.42009 [14] Konyagin S. V., “On divergence of trigonometric Fourier series over cubes”, Acta Sci. Math. (Szeged), 61 (1995), 305-329 · Zbl 0842.42005 [15] Fefferman C., “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191—195 · Zbl 0212.09403 [16] Bakhbukh M., Nikishin E. M., “The convergence of the double Fourier series of continuous functions”, Siberian Math. Journal, 14:6 (1973), 832-839 · Zbl 0285.42029 [17] Bakhvalov A. N., “Divergence everywhere of the Fourier series of continuous functions of several variables”, Sb. Math., 188:8 (1997), 1153—1170 · Zbl 0891.42004 [18] Bakhvalov A. N., “$$\lambda$$ -divergence of the Fourier series of continuous functions of several variables”, Mathematical Notes, 72:3-4 (2002), 454-465 · Zbl 1024.42005 [19] Antonov N. Yu., “On divergence almost everywhere of Fourier series of continuous functions of two variables”, Izvestiya of Saratov University., Math. Mech. Inform., 14, no. 4(2), 2014, 495—502 (in Russian) · Zbl 1310.42003 [20] Stein E.M., “On limits of sequences of operators”, Ann. Math., 74:1 (1961), 140-170 · Zbl 0103.08903 [21] Zygmund A., Trigonometric series, v. 1, Cambridge Univ. Press, New York:, 1959 · JFM 58.0296.09
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.