Unit and unitary Cayley graphs for the ring of Eisenstein integers modulo \(n\). (English) Zbl 1486.05130

Summary: Let \({E}_n\) be the ring of Eisenstein integers modulo \(n\). We denote by \(G({E}_n)\) and \(G_{{E}_n}\), the unit graph and the unitary Cayley graph of \({E}_n \), respectively. In this paper, we obtain the value of the diameter, the girth, the clique number and the chromatic number of these graphs. We also prove that for each \(n>1\), the graphs \(G(E_n)\) and \(G_{E_n}\) are Hamiltonian.


05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C45 Eulerian and Hamiltonian graphs
Full Text: DOI MNR


[1] Aalipour G., Akbari S., “On the Cayley graph of a commutative ring with respect to its zero-divisors”, Comm. Algebra, 44:4 (2016), 1443-1459 · Zbl 1341.05114
[2] Akbari S., Estaji E., Khorsandi M. R., “On the unit graph of a non-commutative ring”, Algebra Colloq., 22, 817-822 · Zbl 1328.05075
[3] Akhtar R., Jackson-Henderson T., Karpman R., Boggess M., Jiménez I., Kinzel A., Pritikin D., “On the unitary Cayley graph of a finite ring”, Electron. J. Combin., 16:1 (2009), R117 · Zbl 1230.05149
[4] Alkam O., Abu Osba E., “On Eisenstein integers modulo \(n\)”, Int. Math. Forum., 5:22 (2010), 1075-1082 · Zbl 1222.11121
[5] Anderson D. F., Badawi A., “The total graph of a commutative ring”, J. Algebra, 320:7 (2008), 2706-2719 · Zbl 1158.13001
[6] Anderson D. F., Livingston P. S., “The zero-divisor graph of a commutative ring”, J. Algebra, 217:2 (1999), 434-447 · Zbl 0941.05062
[7] Ashrafi N., Maimani H. R., Pournaki M. R., Yassemi S., “Unit graphs associated with rings.”, Comm. Algebra, 38 (2010), 2851-2871 · Zbl 1219.05150
[8] Atiyah M. F., MacDonald I. G., Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Menlo Park, California, London, Don Mills, Ontario, 1969, 128 pp. · Zbl 0175.03601
[9] Bahrami A., Jahani-Nezhad R., “Unit and unitary Cayley graphs for the ring of Gaussian integers modulo \(n\)”, Quasigroups Related Systems, 25:2 (2017), 189-200 · Zbl 1401.13024
[10] Beck I., “Coloring of commutative rings”, J. Algebra, 116:1 (1988), 208-226 · Zbl 0654.13001
[11] Bondy J. A., Murty U. S. R., Graph Theory with Applications, North-Holland, New York, Amsterdam, Oxford, 1976, 264 pp. · Zbl 1226.05083
[12] Cayley A., “Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation”, Amer. J. Math., 1:2 (1878), 174-176 · JFM 10.0105.02
[13] Chung F. R. K., “Diameters and eigenvalues”, J. Amer. Math. Soc., 2:2 (1989), 187-196 · Zbl 0678.05037
[14] Dejter I. J., Giudici R. E, “On unitary Cayley graphs”, J. Combin. Math. Comput., 18 (1995), 121-124 · Zbl 0832.05052
[15] Diestel R., Graph Theory, Springer-Verlag, Berlin, Heidelberg, 2001, 428 pp. · Zbl 1375.05002
[16] Grimaldi R. P., “Graphs from rings”, Congr. Numer., 17 (1990), 95-103 · Zbl 0747.05091
[17] Ireland K., Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, NY, 1990, 394 pp. · Zbl 0712.11001
[18] Khashyarmanesh K., Khorsandi M. R., “A generalization of the unit and unitary Cayley graphs of a commutative ring”, Acta Math. Hungar., 137 (2012), 242-253 · Zbl 1289.05205
[19] Kiani D., Aghaei M. M. H., “On the unitary Cayley graph of a ring”, Electron. J. Combin., 19:2 (2012), P10 · Zbl 1264.05066
[20] Lanski C., Maróti A., “Ring elements as sums of units”, Cent. Eur. J. Math., 7 (2009), 395-399 · Zbl 1185.16026
[21] Maimani H. R., Pournaki M. R., Yassemi S., “Weakly perfect graphs arising from rings”, Glasg. Math. J., 52:3 (2010), 417-425 · Zbl 1243.05085
[22] Maimani H. R., Pournaki M. R., Yassemi S., “Necessary and sufficient conditions for unit graphs to be Hamiltonian”, Pacific J. Math., 249:2 (2011), 419-429 · Zbl 1214.05074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.