On necessary optimality conditions for Ramsey-type problems. (English) Zbl 1448.91177

Summary: We study an optimal control problem in infinite time, where the integrand does not depend explicitly on the state variable. A special case of such problem is the Ramsey optimal capital accumulation in centralized economy. To complete the optimality conditions of Pontryagin’s maximum principle, so called transversality conditions of different types are used in the literature. Here, instead of a transversality condition, an additional maximum condition is considered.


91B64 Macroeconomic theory (monetary models, models of taxation)
49K15 Optimality conditions for problems involving ordinary differential equations
Full Text: DOI MNR Link


[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The Mathematical Theory of Optimal Processes, Pergamon, Oxford, NY, 1964, 338 pp. · Zbl 0117.31702
[2] Cass D., “Optimum growth in an aggregative model of capital accumulation”, Rev. Econom. Stud., 32:3 (1965), 233-240
[3] Ramsey F. P., “A mathematical theory of saving”, The Economic J., 38:152 (1928), 543-559
[4] Romer D., Advanced Macroeconomics, 4-th ed., McGraw-Hill, NY, 2012, 736 pp.
[5] Carlson D. A., Haurie A. B., Leizarowitz A., Infinite Horizon Optimal Control, Springer-Verlag, Berlin-Heidelberg, 1991, 332 pp. · Zbl 0758.49001
[6] Halkin H., “Necessary conditions for optimal control problems with infinite horizons”, Econometrica, 42:2 (1974), 267-272 · Zbl 0301.90009
[7] Shell K., “Applications of Pontryagin”s maximum principle to economics”, Mathematical Systems Theory and Economics I/II, 11-12 (1969), 241-292
[8] Kamihigashi T., “Necessity of transversality conditions for infinite horizon problems”, Econometrica, 69:4 (2001), 995-1012 · Zbl 1020.49019
[9] Michel P., “On the transversality condition in infinite horizon optimal problems”, Econometrica, 50:4 (1982), 975-985 · Zbl 0483.90026
[10] Aseev S., Veliov V., “Maximum principle for infinite-horizon optimal control problems with dominating discount”, Dynamics of Continuous, Discrete and Impulsive Systems. Series B: Applications & Algorithms, 19:1-2 (2012), 43-63 · Zbl 1266.49003
[11] Aseev S., Veliov V., “Needle variations in infinite-horizon optimal control”, Contemp. Math., 619 (2014), 1-17 · Zbl 1329.49005
[12] Aseev S. M., Besov K. O., Kryazhimskii A. V., “Infinite-horizon optimal control problems in economics”, Russian Math. Surveys, 67:2 (2012), 195-253 · Zbl 1248.49023
[13] Aseev S. M., Kryazhimskiy A. V., “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons”, SIAM J. Control Optim., 43:3 (2004), 1094-1119 · Zbl 1072.49015
[14] Aseev S. M., Veliov V. M., “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions”, Proc. Steklov Inst. Math., 291:1 (2015), 22-39 · Zbl 1336.49024
[15] Khlopin D., “Necessity of vanishing shadow price in infinite horizon control problems”, J. Dyn. Control Syst., 19:4 (2013), 519-552 · Zbl 1284.49022
[16] Khlopin D., “Necessity of limiting co-state arcs in Bolza-type infinite horizon problem”, Optimization, 64:11 (2015), 2417-2440 · Zbl 1328.49019
[17] Belyakov A. O., Necessary Conditions for Infinite Horizon Optimal Control Problems Revisited, 2017, arXiv:
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.