## On Zygmund-type inequalities concerning polar derivative of polynomials.(English)Zbl 1476.30026

Summary: Let $$P(z)$$ be a polynomial of degree $$n$$, then concerning the estimate for maximum of $$|P'(z)|$$ on the unit circle, it was proved by S. Bernstein that $$\| P'\|_{\infty}\leq n\| P\|_{\infty}$$. Later, Zygmund obtained an $$L_p$$-norm extension of this inequality. The polar derivative $$D_{\alpha}[P](z)$$ of $$P(z)$$, with respect to a point $$\alpha \in \mathbb{C}$$, generalizes the ordinary derivative in the sense that $$\lim_{\alpha\to\infty} D_{\alpha}[P](z)/{\alpha} = P'(z).$$ Recently, for polynomials of the form $$P(z) = a_0 + \sum_{j=\mu}^n a_jz^j,1\leq\mu\leq n$$ and having no zero in $$|z| < k$$ where $$k > 1$$, the following Zygmund-type inequality for polar derivative of $$P(z)$$ was obtained:
$\|D_{\alpha}[P]\|_p\leq n \Big(\dfrac{|\alpha|+k^{\mu}}{\|k^{\mu}+z\|_p}\Big)\|P\|_p, \quad \text{where}\quad |\alpha|\geq1,\quad p>0.$
In this paper, we obtained a refinement of this inequality by involving minimum modulus of $$|P(z)|$$ on $$|z| = k$$, which also includes improvements of some inequalities, for the derivative of a polynomial with restricted zeros as well.

### MSC:

 30C10 Polynomials and rational functions of one complex variable 30A10 Inequalities in the complex plane

### Keywords:

polynomials; polar derivative; $$L^p$$-inequalities
Full Text:

### References:

  Arestov V. V., “On integral inequalities for trigonometric polynomials and their derivatives”, Math. USSR-Izv., 18:1 (1982), 1-17 · Zbl 0517.42001  Arestov V. V., “Integral inequalities for algebraic polynomials with a restriction on their zeros”, Anal. Math., 17 (1991), 11-20 · Zbl 0748.30005  Aziz A., Rather N. A., “$$L^p$$ inequalities for polynomials”, Glas Math., 32:1 (1997), 39-43 · Zbl 0883.30001  Aziz A., Rather N. A., “Some Zygmund type $$L^q$$ inequalities for polynomials”, J. Math. Anal. Appl., 289:1 (2004), 14-29 · Zbl 1040.30002  Aziz A., Rather N. A., “On an inequality concerning the polar derivative of a polynomial”, Proc. Math. Sci., 117 (2007), 349-357 · Zbl 1208.30003  Aziz A, Rather N. A., Aliya Q., “$$L_q$$ norm inequalities for the polar derivative of a polynomial”, Math. Inequal. Appl., 11 (2008), 283-296 · Zbl 1172.42301  De Bruijn N G., “Inequalities concerning polynomials in the complex domain”, Indag. Math. (N.S.), 9:5 (1947), 1265-1272 · Zbl 0029.19802  Gardner R., Weems A., “A Bernstein type $$L^p$$ inequality for a certain class of polynomials”, J. Math. Anal. Appl., 219 (1998), 472-478 · Zbl 0911.30001  Govil N. K., “On the growth of polynomials”, J. Inequal. Appl., 7:5 (2002), 623-631 · Zbl 1025.30002  Govil N. K., Rahman Q. I., “Functions of exponential type not vanishing in a half-plane and related polynomials”, Trans. Amer. Math. Soc., 137 (1969), 501-517 · Zbl 0189.08502  Mahler K., “An application of Jensen”s formula to polynomials”, Mathematika, 7:2 (1960), 98-100 · Zbl 0099.25003  Marden M., Geometry of Polynomials, Math. Surveys and Monographs, Amer. Math. Soc., 1989, 243 pp.  Milovanovic G. V., Mitrinovic D. S., Rassias Th., Topics in Polynomials: Extremal properties, Inequalituies, Zeros, World Scientific, Singapore, 1994, 836 pp. · Zbl 0848.26001  Pólya G.,Szegö G., Aufgaben und lehrsätze aus der Analysis, Berlin, Springer-Verlag, 1925, 353 pp. (in German) · JFM 51.0173.01  Qazi M. A., “On the maximum modulus of polynomials”, Proc. Amer. Math. Soc., 115 (1992), 237-243  Rahman Q. I., Schmeisser G., “$$L^p$$ inequalities for polynomials”, J. Approx. Theory, 53:1 (1998), 26-32 · Zbl 0646.41010  Rather N. A., “Some integral inequalities for the polar derivative of a polynomial”, Math. Balkanica (N.S.), 22:3-4 (2008), 207-216 · Zbl 1167.30300  Rather N. A., “$$L^p$$ inequalities for the polar derivative of a polynomial”, J. Inequal. Pure Appl. Math., 9:4 (2008), 103, 1-10 · Zbl 1163.26322  Rather N. A., Iqbal A., Hyun G. H., “Integral inequalities for the polar derivative of a polynomial”, Nonlinear Funct. Anal. Appl., 23:2 (2018), 381-393 · Zbl 1398.30004  Schaeffer A. C., “Inequalities of A. Markoff and S.Bernstein for polynomials and related functions”, Bull. Amer. Math. Soc., 47 (1941), 565-579 · JFM 67.1001.02  Zygmund A., “A remark on conjugate series”, Proc. Lond. Math. Soc. (3), s2-34:1 (1932), 392-400 · Zbl 0005.35301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.