×

On the potentiality of a class of operators relative to local bilinear forms. (English) Zbl 1477.49054

Summary: The inverse problem of the calculus of variations (IPCV) is solved for a second-order ordinary differential equation with the use of a local bilinear form. We apply methods of analytical dynamics, nonlinear functional analysis, and modern methods for solving the IPCV. In the paper, we obtain necessary and sufficient conditions for a given operator to be potential relative to a local bilinear form, construct the corresponding functional, i.e., found a solution to the IPCV, and define the structure of the considered equation with the potential operator. As a consequence, similar results are obtained when using a nonlocal bilinear form. Theoretical results are illustrated with some examples.

MSC:

49N45 Inverse problems in optimal control
49J05 Existence theories for free problems in one independent variable
49J15 Existence theories for optimal control problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI MNR

References:

[1] Berkovich L. M., “The generalized Emden-Fowler equation”, Symmetry in Nonlinear Mathematical Physics, 1 (1997), 155-163 · Zbl 0952.34030
[2] Budochkina S. A., Savchin V. M., “On direct variational formulations for second order evolutionary equations”, Eurasian Math. J., 3:4 (2012), 23-34 · Zbl 1280.47054
[3] Budotchkina S. A., Savchin V. M., “On indirect variational formulations for operator equations”, J. Funct. Spaces Appl., 5:3 (2007), 231-242 · Zbl 1162.47057
[4] Filippov V. M., Variatsionnye printsipy dlya nepotentsial’nykh operatorov [Variational Principles for Nonpotential Operators], PFU, Moscow, 1985, 206 pp. (in Russian) · Zbl 0699.35011
[5] Filippov V. M., Savchin V. M., Budochkina S. A., “On the existence of variational principles for differential-difference evolution equations”, Proc. Steklov Inst. Math., 283 (2013), 20-34 · Zbl 1296.49033
[6] Filippov V. M., Savchin V. M., Shorokhov S. G., “Variational principles for nonpotential operators”, J. Math. Sci., 68:3 (1994), 275-398 · Zbl 0835.58012
[7] Galiullin A. S., Obratnye zadachi dinamiki [Inverse Problems of Dynamics], Nauka, Moscow, 1981, 144 pp. (in Russian) · Zbl 0516.70002
[8] Galiullin A. S., Gafarov G. G., Malayshka R. P., Khvan A. M., Analiticheskaya dinamika sistem Gel’mgol’tsa, Birkgofa, Nambu [Analytical dynamics of Helmholtz, Birkhoff, Nambu systems], Advances in Physical Sciences, Moscow, 1997, 324 pp. (in Russian)
[9] Popov A. M., “Potentiality conditions for differential-difference equations”, Differ. Equ., 34:3 (1998), 423-426 · Zbl 0947.34067
[10] Popov A. M., “Inverse problem of the calculus of variations for systems of differential-difference equations of second order”, Math. Notes, 72:5 (2002), 687—691 · Zbl 1035.49033
[11] Santilli R. M., Foundations of Theoretical Mechanics, I: The Inverse Problems in Newtonian Mechanics, Springer-Verlag, Berlin—Heidelberg, 1977, 266 pp.
[12] Santilli R. M., Foundations of Theoretical Mechanics, II: Birkhoffian Generalization of Hamiltonian Mechanics., Springer-Verlag, Berlin-Heidelberg, 1983, 370 pp. · Zbl 0536.70001
[13] Savchin V. M., Matematicheskie metody mekhaniki beskonechnomernykh nepotentsial’nykh sistem [Mathematical Methods of Mechanics of Infinite-Dimensional Nonpotential Systems], PFU, Moscow, 1991, 237 pp. (in Russian) · Zbl 0925.70160
[14] Savchin V. M., “An operator approach to Birkhoff”s equations”, Vestnik RUDN. Ser. Math., 1995, no. 2 (2), 111-123 · Zbl 0969.37035
[15] Savchin V. M., Budochkina S. A., “On the structure of a variational equation of evolution type with the second t-derivative”, Differ. Equ., 39:1 (2003), 127-134 · Zbl 1229.34096
[16] Tleubergenov M. I., Ibraeva G. T., “On the solvability of the main inverse problem for stochastic differential systems”, Ukrainian Math. J., 71:1 (2019), 157—165 · Zbl 1433.34031
[17] Tleubergenov M. I., Ibraeva G. T., “On inverse problem of closure of differential systems with degenerate diffusion”, Eurasian Math. J., 10:2 (2019), 93-102 · Zbl 1463.34067
[18] Tonti E., “On the variational formulation for linear initial value problems”, Ann. Mat. Pura Appl. (4), 95 (1973), 331—359 · Zbl 0278.49047
[19] Tonti E., “Variational formulation for every nonlinear problem”, Internat. J. Engrg. Sci., 22:11-12 (1984), 1343—1371 · Zbl 0558.49022
[20] Tonti E., “Extended variational formulation”, Vestnik RUDN. Ser. Math., 1995, no. 2 (2), 148-162 · Zbl 0965.35036
[21] Tunitsky D. V., “On the inverse variational problem for one class of quasilinear equations”, J. Geom. Phys., 148 (2020), 103568 · Zbl 1433.49055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.