Jacobi transform of \((\nu, \gamma, p)\)-Jacobi-Lipschitz functions in the space \(\text{L}^p(\mathbb{R}^+,\Delta_{(\alpha,\beta)}(t) dt)\). (English) Zbl 1443.42005

Summary: Using a generalized translation operator, we obtain an analog of Younis’ theorem [M. S. Younis, Int. J. Math. Math. Sci. 9, 301–312 (1986; Zbl 0595.42006), Theorem 5.2] for the Jacobi transform for functions from the \((\nu, \gamma, p)\)-Jacobi-Lipschitz class in the space \(\text{L}^p(\mathbb{R}^+,\Delta_{(\alpha,\beta)}(t)dt)\).


42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
43A85 Harmonic analysis on homogeneous spaces
22E30 Analysis on real and complex Lie groups
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)


Zbl 0595.42006
Full Text: DOI MNR


[1] Anker J.-P., Damek E. and Yacoub C., “Spherical analysis on harmonic \(AN\) groups”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 23:4 (1996), 643-679 · Zbl 0881.22008
[2] Bray W. O., Pinsky M. A., “Growth properties of Fourier transforms via moduli of continuity”, J. Funct. Anal., 255:9 (2008), 2265-2285 · Zbl 1159.42006
[3] Chokri A., Jemai A., “Integrability theorems for Fourier-Jacobi transform”, J. Math. Inequal., 6:3 (2012), 343-353 · Zbl 1272.47059
[4] Daher R., El Hamma M., “Some estimates for the Jacobi transform in the space \(\text{L}^2 (\mathbb{R}^+, \Delta_{(\alpha,\beta)}(t)dt)\)”, Int. J. Appl. Math., 25:1 (2012), 13-24 · Zbl 1266.42074
[5] Flensted-Jensen M., Koornwinder T. H., “The convolution structure for Jacobi expansions”, Ark. Mat., 11:1-2 (1973), 245-262 · Zbl 0267.42009
[6] Koornwinder T. H., “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special Functions: Group Theoretical Aspect and Applications, 18 (1984), 1-85 · Zbl 0584.43010
[7] Platonov S. S., “Approximation of functions in \(\text{L}_2 \)-metric on noncompact symmetric spaces of rank 1”, Algebra i Analiz, 11:1 (1999), 244-270 · Zbl 0952.41023
[8] Younis M. S., “Fourier transforms of Dini-Lipschitz functions”, Int. J. Math. Math. Sci., 9 (1986), 301-312 · Zbl 0595.42006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.