×

The effect of discretization on the mean geometry of a 2D random field. (Effet de la discrétisation sur la géométrie moyenne des champs aléatoires 2D.) (English. French summary) Zbl 1492.60029

Summary: The study of the geometry of excursion sets of 2D random fields is a question of interest from both the theoretical and the applied viewpoints. In this paper we are interested in the relationship between the perimeter (resp. the total curvature, related to the Euler characteristic by Gauss-Bonnet Theorem) of the excursion sets of a function and the ones of its discretization. Our approach is a weak framework in which we consider the functions that map the level of the excursion set to the perimeter (resp. the total curvature) of the excursion set. We will be also interested in a stochastic framework in which the sets are the excursion sets of 2D random fields. We show in particular that, under some stationarity and isotropy conditions on the random field, in expectation, the perimeter is always biased (with a \(4/\pi\) factor), whereas the total curvature is not. We illustrate all our results on different examples of random fields.

MSC:

60D05 Geometric probability and stochastic geometry
26B15 Integration of real functions of several variables: length, area, volume
28A75 Length, area, volume, other geometric measure theory
60G10 Stationary stochastic processes
60G22 Fractional processes, including fractional Brownian motion
60G60 Random fields
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adler, Robert J., On excursion sets, tube formulas and maxima of random fields, Ann. Appl. Probab., 10, 1, 1-74 (2000) · Zbl 1171.60338
[2] Ambrosio, Luigi; Fusco, Nicola; Pallara, Diego, Functions of bounded variation and free discontinuity problems (2000), Clarendon Press · Zbl 0957.49001
[3] Ahsanullah, Mohammad; Nevzorov, Valery B., Ordered random variables (2001), Nova Science Publishers, Inc., Huntington, NY · Zbl 1114.62330
[4] Adler, Robert J.; Taylor, Jonathan E., Random fields and geometry (2007), Springer · Zbl 1149.60003
[5] Azaïs, Jean-Marc; Wschebor, Mario, Level sets and extrema of random processes and fields (2009), John Wiley And Sons · Zbl 1168.60002
[6] Bilodeau, Martin; Brenner, David, Theory of multivariate statistics (1999), Springer · Zbl 0930.62054
[7] Biermé, Hermine; Desolneux, Agnès, On the perimeter of excursion sets of shot noise random fields, Ann. Probab., 44, 1, 521-543 (2016) · Zbl 1343.60060
[8] Biermé, Hermine; Desolneux, Agnès, Mean Geometry for 2D random fields: level perimeter and level total curvature integrals, Ann. Appl. Probab., 30, 2, 561-607 (2020) · Zbl 1464.60049
[9] Biermé, Hermine; Di Bernardino, Elena; Duval, Céline; Estrade, Anne, Lipschitz-Killing curvatures of excursion sets for two-dimensional random fields, Electron. J. Stat., 13, 1, 536-581 (2019) · Zbl 1406.60076 · doi:10.1214/19-EJS1530
[10] Biermé, Hermine, Stochastic geometry, 2237, Introduction to random fields and scale invariance, 129-180 (2019), Springer · doi:10.1007/978-3-030-13547-8_4
[11] Cao, Frédéric, Geometric Curve Evolution and Image Processing, 1805 (2003), Springer · Zbl 1290.35001
[12] Di Bernardino, Elena; Estrade, Anne; León, José R., A test of Gaussianity based on the Euler Characteristic of excursion sets, Electron. J. Stat., 11, 1, 843-890 (2017) · Zbl 1362.62098 · doi:10.1214/17-EJS1248
[13] Do Carmo, Manfredo P., Differential Geometry of Curves and Surfaces (1976), Prentice Hall · Zbl 0326.53001
[14] Evans, Lawrence C.; Gariepy, Ronald F., Measure theory and fine properties of functions (1992), CRC Press · Zbl 0804.28001
[15] Estrade, Anne; León, José R., A central limit theorem for the Euler characteristic of a Gaussian excursion set, Ann. Probab., 44, 6, 3849-3878 (2016) · Zbl 1367.60016 · doi:10.1214/15-AOP1062
[16] Gundersen, Hans J. G.; Jensen, E. B., The efficiency of systematic sampling in stereology and its prediction, Journal of Microscopy, 147, 3, 229-263 (1987) · doi:10.1111/j.1365-2818.1987.tb02837.x
[17] Gray, Stephen B., Local Properties of Binary Images in Two Dimensions, IEEE Trans. Comput., C-20, 5, 551-561 (1971) · Zbl 0216.50101 · doi:10.1109/T-C.1971.223289
[18] Klenk, Simone; Schmidt, Volker; Spodarev, Evgueni, A new algorithmic approach to the computation of Minkowski functionals of polyconvex sets, Comput. Geom., 34, 3, 127-148 (2006) · Zbl 1104.65012 · doi:10.1016/j.comgeo.2006.02.002
[19] Kratz, Marie; Vadlamani, Sreekar, Central limit theorem for Lipschitz-Killing curvatures of excursion sets of Gaussian random fields, J. Theor. Probab., 31, 3, 1729-1758 (2018) · Zbl 1404.60034 · doi:10.1007/s10959-017-0760-6
[20] Lachièze-Rey, Raphaël, Bicovariograms and Euler characteristic of random fields excursions, Stochastic Processes Appl., 129, 11, 4687-4703 (2019) · Zbl 1448.60112 · doi:10.1016/j.spa.2018.12.006
[21] Matheron, Georges, Random sets and integral geometry (1975), John Wiley & Sons · Zbl 0321.60009
[22] Pratt, William K., Digital Image Processing: PIKS Scientific Inside (2007), John Wiley & Sons · Zbl 1303.68004
[23] Pausinger, Florian; Svane, Anne M., A Koksma-Hlawka inequality for general discrepancy systems, J. Complexity, 31, 6, 773-797 (2015) · Zbl 1377.11084 · doi:10.1016/j.jco.2015.06.002
[24] Rosenfeld, Azriel, Digital topology, Am. Math. Mon., 86, 8, 621-630 (1979) · Zbl 0432.68061 · doi:10.2307/2321290
[25] Serra, Jean, Image Analysis and Mathematical Morphology (1982), Academic Press Inc. · Zbl 0565.92001
[26] Stoyan, Dietrich; Kendall, Wilfrid S.; Mecke, Joseph, Stochastic geometry and its applications (1987), John Wiley & Sons · Zbl 0622.60019
[27] Svane, Anne M., Estimation of intrinsic volumes from digital grey-scale images, J. Math. Imaging Vis., 49, 2, 352-376 (2014) · Zbl 1361.68297 · doi:10.1007/s10851-013-0469-9
[28] Svane, Anne M., Local digital algorithms for estimating the integrated mean curvature of \(r\)-regular sets, Discrete Comput. Geom., 54, 2, 316-338 (2015) · Zbl 1400.94030 · doi:10.1007/s00454-015-9708-8
[29] Thäle, Christoph, 50 years sets with positive reach—a survey, Surv. Math. Appl., 3, 123-165 (2008) · Zbl 1173.49039
[30] Tong, Yung Liang, The Multivariate Normal Distribution (1990), Springer · Zbl 0689.62036
[31] Worsley, Keith J., The geometry of random images, Chance, 9, 1, 27-40 (1996) · doi:10.1080/09332480.1996.10542483
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.