Alim, Murad; Hollands, Lotte; Tulli, Iván Quantum curves, resurgence and exact WKB. (English) Zbl 07667626 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 009, 82 p. (2023). MSC: 81T30 PDF BibTeX XML Cite \textit{M. Alim} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 009, 82 p. (2023; Zbl 07667626) Full Text: DOI arXiv OpenURL
Groenevelt, Wolter; Wagenaar, Carel An Askey-Wilson algebra of rank 2. (English) Zbl 07667625 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 008, 35 p. (2023). MSC: 20G42 33D80 PDF BibTeX XML Cite \textit{W. Groenevelt} and \textit{C. Wagenaar}, SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 008, 35 p. (2023; Zbl 07667625) Full Text: DOI arXiv OpenURL
Tela, Guesh Yfter; Zhao, Song-Lin; Zhang, Da-Jun On the fourth-order lattice Gel’fand-Dikii equations. (English) Zbl 07667624 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 007, 30 p. (2023). MSC: 35Q53 35C08 37K60 37K35 37K10 35G05 39A36 PDF BibTeX XML Cite \textit{G. Y. Tela} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 007, 30 p. (2023; Zbl 07667624) Full Text: DOI arXiv OpenURL
Diehl, Joscha; Gerhold, Malte; Gilliers, Nicolas Shuffle algebras and non-commutative probability for pairs of faces. (English) Zbl 07654972 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 006, 50 p. (2023). Reviewer: Loïc Foissy (Calais) MSC: 18M05 60A05 46L54 16T05 16T10 16T30 PDF BibTeX XML Cite \textit{J. Diehl} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 006, 50 p. (2023; Zbl 07654972) Full Text: DOI arXiv OpenURL
Chruściel, Piotr T.; Delay, Erwann On asymptotically locally hyperbolic metrics with negative mass. (English) Zbl 07654882 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 005, 15 p. (2023). MSC: 53C21 83C05 PDF BibTeX XML Cite \textit{P. T. Chruściel} and \textit{E. Delay}, SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 005, 15 p. (2023; Zbl 07654882) Full Text: DOI arXiv OpenURL
Fujie, Katsunori; Ueda, Yuki Law of large numbers for roots of finite free multiplicative convolution of polynomials. (English) Zbl 07648410 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 004, 11 p. (2023). MSC: 46L54 26C10 60F05 PDF BibTeX XML Cite \textit{K. Fujie} and \textit{Y. Ueda}, SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 004, 11 p. (2023; Zbl 07648410) Full Text: DOI arXiv OpenURL
Hitchin, Nigel J. A note on coupled Dirac operators. (English) Zbl 07648409 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 003, 9 p. (2023). MSC: 53C07 14D20 PDF BibTeX XML Cite \textit{N. J. Hitchin}, SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 003, 9 p. (2023; Zbl 07648409) Full Text: DOI arXiv OpenURL
Chae, John A cable knot and BPS-series. (English) Zbl 07648408 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 002, 12 p. (2023). MSC: 57K10 57K16 57K31 81R50 PDF BibTeX XML Cite \textit{J. Chae}, SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 002, 12 p. (2023; Zbl 07648408) Full Text: DOI arXiv OpenURL
Olshanii, Maxim A novel potential featuring off-center circular orbits. (English) Zbl 07643819 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 001, 8 p. (2023). MSC: 70Hxx 70Fxx PDF BibTeX XML Cite \textit{M. Olshanii}, SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 001, 8 p. (2023; Zbl 07643819) Full Text: DOI arXiv OpenURL
De Lazzari, Claudia; Motwani, Harshit J.; Seynnaeve, Tim The linear span of uniform matrix product states. (English) Zbl 07636988 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 099, 18 p. (2022). MSC: 14L24 13A50 20G05 PDF BibTeX XML Cite \textit{C. De Lazzari} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 099, 18 p. (2022; Zbl 07636988) Full Text: DOI arXiv OpenURL
Komeda, Jiryo; Matsutani, Shigeki; Previato, Emma Complementary modules of Weierstrass canonical forms. (English) Zbl 07634831 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 098, 39 p. (2022). MSC: 14H55 14H50 16S36 13H10 PDF BibTeX XML Cite \textit{J. Komeda} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 098, 39 p. (2022; Zbl 07634831) Full Text: DOI arXiv OpenURL
van Geemen, Bert Weil classes and decomposable abelian fourfolds. (English) Zbl 07633373 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 097, 18 p. (2022). MSC: 14C30 14C25 14K20 PDF BibTeX XML Cite \textit{B. van Geemen}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 097, 18 p. (2022; Zbl 07633373) Full Text: DOI arXiv OpenURL
Gilliers, Nicolas; Bellingeri, Carlo On the signature of a path in an operator algebra. (English) Zbl 07632526 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 096, 43 p. (2022). MSC: 46L89 18M60 18M80 60L10 PDF BibTeX XML Cite \textit{N. Gilliers} and \textit{C. Bellingeri}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 096, 43 p. (2022; Zbl 07632526) Full Text: DOI arXiv OpenURL
Hablicsek, Márton; Vogel, Jesse Virtual classes of representation varieties of upper triangular matrices via topological quantum field theories. (English) Zbl 1502.14033 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 095, 38 p. (2022). Reviewer: Sean Lawton (Fairfax) MSC: 14D23 14D21 14C30 14D20 14D07 57R56 PDF BibTeX XML Cite \textit{M. Hablicsek} and \textit{J. Vogel}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 095, 38 p. (2022; Zbl 1502.14033) Full Text: DOI arXiv OpenURL
Tsiganov, Andrey V. Equivalent integrable metrics on the sphere with quartic invariants. (English) Zbl 07629268 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 094, 19 p. (2022). MSC: 37J35 37J11 37J39 53D22 70H06 70H45 PDF BibTeX XML Cite \textit{A. V. Tsiganov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 094, 19 p. (2022; Zbl 07629268) Full Text: DOI arXiv OpenURL
Granja, Gustavo; Milivojević, Aleksandar Topology of almost complex structures on six-manifolds. (English) Zbl 07629267 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 093, 23 p. (2022). MSC: 32Q60 53C28 55P62 PDF BibTeX XML Cite \textit{G. Granja} and \textit{A. Milivojević}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 093, 23 p. (2022; Zbl 07629267) Full Text: DOI arXiv OpenURL
Kosmann-Schwarzbach, Yvette Seven concepts attributed to Siméon-Denis Poisson. (English) Zbl 1503.01012 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 092, 13 p. (2022). MSC: 01A55 01A70 31A30 35J05 60G55 PDF BibTeX XML Cite \textit{Y. Kosmann-Schwarzbach}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 092, 13 p. (2022; Zbl 1503.01012) Full Text: DOI arXiv OpenURL
Kitaoka, Akira Ray-Singer torsion and the Rumin Laplacian on Lens spaces. (English) Zbl 07629265 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 091, 16 p. (2022). Reviewer: Kai Köhler (Düsseldorf) MSC: 58J52 32V20 53D10 43A85 PDF BibTeX XML Cite \textit{A. Kitaoka}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 091, 16 p. (2022; Zbl 07629265) Full Text: DOI arXiv OpenURL
Liu, Henry A representation-theoretic approach to \(qq\)-characters. (English) Zbl 07629264 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 090, 20 p. (2022). MSC: 17B37 17B67 14N35 PDF BibTeX XML Cite \textit{H. Liu}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 090, 20 p. (2022; Zbl 07629264) Full Text: DOI arXiv OpenURL
Banaian, Esther; Chepuri, Sunita; Kelley, Elizabeth; Zhang, Sylvester W. Rooted clusters for graph LP algebras. (English) Zbl 07629263 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 089, 30 p. (2022). MSC: 13F60 05E16 05C70 PDF BibTeX XML Cite \textit{E. Banaian} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 089, 30 p. (2022; Zbl 07629263) Full Text: DOI arXiv OpenURL
Bäuerle, Andreas; Hausen, Jürgen On Gorenstein Fano threefolds with an action of a two-dimensional torus. (English) Zbl 07629262 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 088, 42 p. (2022). MSC: 14J45 14J35 14L30 PDF BibTeX XML Cite \textit{A. Bäuerle} and \textit{J. Hausen}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 088, 42 p. (2022; Zbl 07629262) Full Text: DOI arXiv OpenURL
Chen, Yunxia; Leung, Naichung Conan ADE bundles over surfaces. (English) Zbl 1503.14028 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 087, 21 p. (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14H60 53C10 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{N. C. Leung}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 087, 21 p. (2022; Zbl 1503.14028) Full Text: DOI arXiv OpenURL
Case, Jeffrey; Khaitan, Ayush The weighted ambient metric. (English) Zbl 1503.53084 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 086, 21 p. (2022). MSC: 53C23 53A31 53A55 31C12 PDF BibTeX XML Cite \textit{J. Case} and \textit{A. Khaitan}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 086, 21 p. (2022; Zbl 1503.53084) Full Text: DOI arXiv OpenURL
Franc, Cameron; Mason, Geoffrey Character vectors of strongly regular vertex operator algebras. (English) Zbl 07612169 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 085, 49 p. (2022). MSC: 17B69 18M20 11F03 PDF BibTeX XML Cite \textit{C. Franc} and \textit{G. Mason}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 085, 49 p. (2022; Zbl 07612169) Full Text: DOI arXiv OpenURL
Sevryuk, Mikhail B. Three examples in the dynamical systems theory. (English) Zbl 07612168 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 084, 13 p. (2022). MSC: 37C05 37C10 37C15 37E30 57R17 53D12 PDF BibTeX XML Cite \textit{M. B. Sevryuk}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 084, 13 p. (2022; Zbl 07612168) Full Text: DOI arXiv OpenURL
Köstler, Claus; Krishnan, Arundhathi Markovianity and the Thompson group \(F\). (English) Zbl 07612167 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 083, 27 p. (2022). Reviewer: Adam Skalski (Warszawa) MSC: 46L53 60J05 60G09 PDF BibTeX XML Cite \textit{C. Köstler} and \textit{A. Krishnan}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 083, 27 p. (2022; Zbl 07612167) Full Text: DOI arXiv OpenURL
Gray, W. Steven Entropy of generating series for nonlinear input-output systems and their interconnections. (English) Zbl 07612166 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 082, 15 p. (2022). MSC: 68R15 94A17 93C10 16T30 PDF BibTeX XML Cite \textit{W. S. Gray}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 082, 15 p. (2022; Zbl 07612166) Full Text: DOI arXiv OpenURL
Uvarov, Filipp Difference operators and duality for trigonometric Gaudin and dynamical Hamiltonians. (English) Zbl 1502.82005 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 081, 41 p. (2022). MSC: 82B23 17B80 39A05 34M35 PDF BibTeX XML Cite \textit{F. Uvarov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 081, 41 p. (2022; Zbl 1502.82005) Full Text: DOI arXiv OpenURL
Nobukawa, Takahiko Connection problem for an extension of \(q\)-hypergeometric systems. (English) Zbl 07612164 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 080, 21 p. (2022). MSC: 33D70 39A13 PDF BibTeX XML Cite \textit{T. Nobukawa}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 080, 21 p. (2022; Zbl 07612164) Full Text: DOI arXiv OpenURL
Petrov, Leonid Noncolliding Macdonald walks with an absorbing wall. (English) Zbl 07612163 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 079, 21 p. (2022). MSC: 06C05 05E05 05A30 PDF BibTeX XML Cite \textit{L. Petrov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 079, 21 p. (2022; Zbl 07612163) Full Text: DOI arXiv OpenURL
Arbesfeld, Noah K-theoretic descendent series for Hilbert schemes of points on surfaces. (English) Zbl 07612162 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 078, 16 p. (2022). MSC: 14C05 14C17 05E05 PDF BibTeX XML Cite \textit{N. Arbesfeld}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 078, 16 p. (2022; Zbl 07612162) Full Text: DOI arXiv OpenURL
Dubrovin, Boris; Valeri, Daniele; Yang, Di Affine Kac-Moody algebras and tau-functions for the Drinfeld-Sokolov hierarchies: the matrix-resolvent method. (English) Zbl 07612161 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 077, 32 p. (2022). Reviewer: Ma Wen-Xiu (Tampa) MSC: 37K10 37K30 35Q51 17B80 17B67 PDF BibTeX XML Cite \textit{B. Dubrovin} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 077, 32 p. (2022; Zbl 07612161) Full Text: DOI arXiv OpenURL
Oberdieck, Georg Universality of descendent integrals over moduli spaces of stable sheaves on \(K3\) surfaces. (English) Zbl 1497.14023 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 076, 15 p. (2022). MSC: 14D20 14J60 14J28 14J80 PDF BibTeX XML Cite \textit{G. Oberdieck}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 076, 15 p. (2022; Zbl 1497.14023) Full Text: DOI arXiv OpenURL
Gerhold, Malte; Lachs, Stephanie; Schürmann, Michael Categorial independence and Lévy processes. (English) Zbl 1498.18020 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 075, 27 p. (2022). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 18M05 60G20 81R50 PDF BibTeX XML Cite \textit{M. Gerhold} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 075, 27 p. (2022; Zbl 1498.18020) Full Text: DOI arXiv OpenURL
Skrypnyk, Taras The generalized Lipkin-Meshkov-Glick model and the modified algebraic Bethe ansatz. (English) Zbl 07602676 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 074, 18 p. (2022). MSC: 81R12 82B23 17B80 PDF BibTeX XML Cite \textit{T. Skrypnyk}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 074, 18 p. (2022; Zbl 07602676) Full Text: DOI arXiv OpenURL
Arizmendi, Octavio; Celestino, Adrian Monotone cumulant-moment formula and Schröder trees. (English) Zbl 07602675 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 073, 22 p. (2022). Reviewer: Loïc Foissy (Calais) MSC: 16T05 05C05 17A30 46L53 PDF BibTeX XML Cite \textit{O. Arizmendi} and \textit{A. Celestino}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 073, 22 p. (2022; Zbl 07602675) Full Text: DOI arXiv OpenURL
Kojima, Takeo Quadratic relations of the deformed \(W\)-algebra for the twisted affine Lie algebra of type \(A_{2N}^{(2)}\). (English) Zbl 07602674 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 072, 36 p. (2022). MSC: 81R10 81R12 81R50 81T40 81U15 PDF BibTeX XML Cite \textit{T. Kojima}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 072, 36 p. (2022; Zbl 07602674) Full Text: DOI arXiv OpenURL
Skeide, Michael Spatial Markov semigroups admit Hudson-Parthasarathy dilations. (English) Zbl 07602673 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 071, 8 p. (2022). MSC: 46L55 46L53 81S22 60J25 PDF BibTeX XML Cite \textit{M. Skeide}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 071, 8 p. (2022; Zbl 07602673) Full Text: DOI arXiv OpenURL
Carotenuto, Alessandro; Ó Buachalla, Réamonn Bimodule connections for relative line modules over the irreducible quantum flag manifolds. (English) Zbl 07602672 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 070, 21 p. (2022). MSC: 46L87 81R60 81R50 17B37 16T05 PDF BibTeX XML Cite \textit{A. Carotenuto} and \textit{R. Ó Buachalla}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 070, 21 p. (2022; Zbl 07602672) Full Text: DOI arXiv OpenURL
Voit, Michael Freezing limits for beta-Cauchy ensembles. (English) Zbl 1498.60101 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 069, 25 p. (2022). MSC: 60F05 60B20 70F10 82C22 33C45 PDF BibTeX XML Cite \textit{M. Voit}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 069, 25 p. (2022; Zbl 1498.60101) Full Text: DOI arXiv OpenURL
Gross, Jacob; Joyce, Dominic; Tanaka, Yuuji Universal structures in \(\mathbb{C}\)-linear enumerative invariant theories. (English) Zbl 07602670 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 068, 61 p. (2022). Reviewer: Mee Seong Im (Annapolis) MSC: 14D20 17B69 16G20 PDF BibTeX XML Cite \textit{J. Gross} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 068, 61 p. (2022; Zbl 07602670) Full Text: DOI arXiv OpenURL
Baraquin, Isabelle; Cébron, Guillaume; Franz, Uwe; Maassen, Laura; Weber, Moritz De Finetti theorems for the unitary dual group. (English) Zbl 07602669 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 067, 29 p. (2022). MSC: 46L54 46L65 60G09 PDF BibTeX XML Cite \textit{I. Baraquin} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 067, 29 p. (2022; Zbl 07602669) Full Text: DOI arXiv OpenURL
Li, Nianhua; Liu, Q. P. Smooth multisoliton solutions of a 2-component peakon system with cubic nonlinearity. (English) Zbl 1497.35412 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 066, 14 p. (2022). MSC: 35Q51 35Q53 35C08 35B65 37K10 37K35 PDF BibTeX XML Cite \textit{N. Li} and \textit{Q. P. Liu}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 066, 14 p. (2022; Zbl 1497.35412) Full Text: DOI arXiv OpenURL
Al Ameer, Amerah A.; Kisil, Vladimir V. Tuning co- and contra-variant transforms: the Heisenberg group illustration. (English) Zbl 07584799 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 065, 21 p. (2022). MSC: 43A65 43A32 43A80 81R30 PDF BibTeX XML Cite \textit{A. A. Al Ameer} and \textit{V. V. Kisil}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 065, 21 p. (2022; Zbl 07584799) Full Text: DOI arXiv OpenURL
Korinman, Julien Mapping class group representations derived from stated skein algebras. (English) Zbl 07584798 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 064, 35 p. (2022). MSC: 57R56 57K20 57K31 57K10 57K16 PDF BibTeX XML Cite \textit{J. Korinman}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 064, 35 p. (2022; Zbl 07584798) Full Text: DOI arXiv OpenURL
Ercolani, Nicholas M.; Ramalheira-Tsu, Jonathan A path-counting analysis of phase shifts in box-ball systems. (English) Zbl 07584797 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 063, 42 p. (2022). MSC: 17B80 37J70 37K10 PDF BibTeX XML Cite \textit{N. M. Ercolani} and \textit{J. Ramalheira-Tsu}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 063, 42 p. (2022; Zbl 07584797) Full Text: DOI arXiv OpenURL
Meneses, Claudio Geometric models and variation of weights on moduli of parabolic Higgs bundles over the Riemann sphere: a case study. (English) Zbl 1498.14093 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 062, 41 p. (2022). Reviewer: Aigli Papantonopoulou (Ewing) MSC: 14H60 14D22 32G13 22E25 PDF BibTeX XML Cite \textit{C. Meneses}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 062, 41 p. (2022; Zbl 1498.14093) Full Text: DOI arXiv OpenURL
Oprea, Dragos Big and nef tautological vector bundles over the Hilbert scheme of points. (English) Zbl 1502.14015 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 061, 21 p. (2022). Reviewer: Shintaro Yanagida (Nagoya) MSC: 14C05 14D20 14C17 PDF BibTeX XML Cite \textit{D. Oprea}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 061, 21 p. (2022; Zbl 1502.14015) Full Text: DOI arXiv OpenURL
Dong, Rui The gauge group and perturbation semigroup of an operator system. (English) Zbl 07584794 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 060, 18 p. (2022). MSC: 46L07 47L25 58B34 11M55 PDF BibTeX XML Cite \textit{R. Dong}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 060, 18 p. (2022; Zbl 07584794) Full Text: DOI arXiv OpenURL
Kleiman, Steven; Piene, Ragni Node polynomials for curves on surfaces. (English) Zbl 1497.14106 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 059, 23 p. (2022). Reviewer: Caterina Cumino (Torino) MSC: 14N10 14C20 14H40 14K05 PDF BibTeX XML Cite \textit{S. Kleiman} and \textit{R. Piene}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 059, 23 p. (2022; Zbl 1497.14106) Full Text: DOI arXiv OpenURL
Tashiro, Kenshiro Systolic inequalities for compact quotients of Carnot groups with Popp’s volume. (English) Zbl 1498.53049 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 058, 16 p. (2022). MSC: 53C17 26B15 22E25 PDF BibTeX XML Cite \textit{K. Tashiro}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 058, 16 p. (2022; Zbl 1498.53049) Full Text: DOI arXiv OpenURL
Wulff, Christopher Equivariant coarse (co-)homology theories. (English) Zbl 07569537 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 057, 62 p. (2022). Reviewer: Elisa Hartmann (Göttingen) MSC: 55N35 51F30 46L85 PDF BibTeX XML Cite \textit{C. Wulff}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 057, 62 p. (2022; Zbl 07569537) Full Text: DOI arXiv OpenURL
Sasaki, Shoko; Takagi, Shun; Takemura, Kouichi \(q\)-middle convolution and \(q\)-Painlevé equation. (English) Zbl 07569536 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 056, 21 p. (2022). MSC: 33E10 34M55 39A13 PDF BibTeX XML Cite \textit{S. Sasaki} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 056, 21 p. (2022; Zbl 07569536) Full Text: DOI arXiv OpenURL
Gammage, Benjamin; Le, Ian Mirror symmetry for truncated cluster varieties. (English) Zbl 1498.53109 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 055, 30 p. (2022). MSC: 53D37 13F60 PDF BibTeX XML Cite \textit{B. Gammage} and \textit{I. Le}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 055, 30 p. (2022; Zbl 1498.53109) Full Text: DOI arXiv OpenURL
Liu, Meijun; Liu, Jiefeng; Sheng, Yunhe Deformations and cohomologies of relative Rota-Baxter operators on Lie algebroids and Koszul-Vinberg structures. (English) Zbl 1498.53105 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 054, 26 p. (2022). MSC: 53D17 53C25 58A12 17B70 PDF BibTeX XML Cite \textit{M. Liu} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 054, 26 p. (2022; Zbl 1498.53105) Full Text: DOI arXiv OpenURL
Kaufmann, Ralph M.; Mo, Yang Pathlike co/bialgebras and their antipodes with applications to bi- and Hopf algebras appearing in topology, number theory and physics. (English) Zbl 1497.18031 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 053, 42 p. (2022). Reviewer: Laurent Poinsot (Villetaneuse) MSC: 18M85 16T05 81T15 81R50 PDF BibTeX XML Cite \textit{R. M. Kaufmann} and \textit{Y. Mo}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 053, 42 p. (2022; Zbl 1497.18031) Full Text: DOI arXiv OpenURL
Alekseev, Vadim; Thom, Andreas Maximal discrete subgroups in unitary groups of operator algebras. (English) Zbl 1503.46048 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 052, 7 p. (2022). MSC: 46L10 22E40 20F38 PDF BibTeX XML Cite \textit{V. Alekseev} and \textit{A. Thom}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 052, 7 p. (2022; Zbl 1503.46048) Full Text: DOI arXiv OpenURL
Feigin, Boris; Jimbo, Michio; Mukhin, Evgeny Quantum toroidal comodule algebra of type \(A_{n-1}\) and integrals of motion. (English) Zbl 1492.81062 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 051, 31 p. (2022). MSC: 81R10 81R12 17B69 17B80 PDF BibTeX XML Cite \textit{B. Feigin} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 051, 31 p. (2022; Zbl 1492.81062) Full Text: DOI arXiv OpenURL
Ueda, Yoshimichi Spherical representations of \(C^\ast\)-flows. II: Representation system and quantum group setup. (English) Zbl 1498.22006 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 050, 43 p. (2022). MSC: 22D25 22E66 46L67 17B37 PDF BibTeX XML Cite \textit{Y. Ueda}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 050, 43 p. (2022; Zbl 1498.22006) Full Text: DOI arXiv OpenURL
Endo, Taiki; Katori, Makoto; Sakuma, Noriyoshi Functional equations solving initial-value problems of complex Burgers-type equations for one-dimensional log-gases. (English) Zbl 1492.82010 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 049, 22 p. (2022). MSC: 82C22 60B20 44A15 46L54 PDF BibTeX XML Cite \textit{T. Endo} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 049, 22 p. (2022; Zbl 1492.82010) Full Text: DOI arXiv OpenURL
Verschoor, Carlo On the monodromy invariant Hermitian form for \(A\)-hypergeometric systems. (English) Zbl 1491.14018 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 048, 14 p. (2022). Reviewer: Vladimir P. Kostov (Nice) MSC: 14D05 33C70 PDF BibTeX XML Cite \textit{C. Verschoor}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 048, 14 p. (2022; Zbl 1491.14018) Full Text: DOI arXiv OpenURL
Simanek, Brian Determinantal formulas for exceptional orthogonal polynomials. (English) Zbl 1492.42028 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 047, 16 p. (2022). MSC: 42C05 33C47 PDF BibTeX XML Cite \textit{B. Simanek}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 047, 16 p. (2022; Zbl 1492.42028) Full Text: DOI arXiv OpenURL
Böhm, Janko; Goldner, Christoph; Markwig, Hannah Tropical mirror symmetry in dimension one. (English) Zbl 1495.14056 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 046, 30 p. (2022). Reviewer: Felix Röhrle (Frankfurt am Main) MSC: 14J33 14N35 14T90 81T18 11F11 14H30 14N10 14H52 14H81 PDF BibTeX XML Cite \textit{J. Böhm} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 046, 30 p. (2022; Zbl 1495.14056) Full Text: DOI arXiv OpenURL
Albonico, Giulia; Geyer, Yvonne; Mason, Lionel From twistor-particle models to massive amplitudes. (English) Zbl 1492.81084 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 045, 21 p. (2022). MSC: 81U20 83C60 32L25 81T30 81T13 PDF BibTeX XML Cite \textit{G. Albonico} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 045, 21 p. (2022; Zbl 1492.81084) Full Text: DOI arXiv OpenURL
Gough, John E. Field calculus: Quantum and statistical field theory without the Feynman diagrams. (English) Zbl 1492.81074 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 044, 15 p. (2022). MSC: 81T18 05C75 81S25 PDF BibTeX XML Cite \textit{J. E. Gough}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 044, 15 p. (2022; Zbl 1492.81074) Full Text: DOI arXiv OpenURL
Wen, Yaoxinog Difference equation for quintic 3-fold. (English) Zbl 1492.14102 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 043, 25 p. (2022). Reviewer: Vladimir P. Kostov (Nice) MSC: 14N35 33D90 39A13 PDF BibTeX XML Cite \textit{Y. Wen}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 043, 25 p. (2022; Zbl 1492.14102) Full Text: DOI arXiv OpenURL
Haïoun, Benjamin Relating stated skein algebras and internal skein algebras. (English) Zbl 07557708 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 042, 39 p. (2022). Reviewer: Tian Yang (College Station) MSC: 57K16 18M15 PDF BibTeX XML Cite \textit{B. Haïoun}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 042, 39 p. (2022; Zbl 07557708) Full Text: DOI arXiv OpenURL
Bi, Lijuan; Cohl, Howard S.; Volkmer, Hans Expansion for a fundamental solution of Laplace’s equation in flat-ring cyclide coordinates. (English) Zbl 1497.35099 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 041, 31 p. (2022). MSC: 35J05 35A08 PDF BibTeX XML Cite \textit{L. Bi} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 041, 31 p. (2022; Zbl 1497.35099) Full Text: DOI arXiv OpenURL
Calvert, Kieran; De Martino, Marcelo Dirac operators for the Dunkl angular momentum algebra. (English) Zbl 1492.16024 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 040, 18 p. (2022). MSC: 16S37 16G99 17B81 20F55 81R10 PDF BibTeX XML Cite \textit{K. Calvert} and \textit{M. De Martino}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 040, 18 p. (2022; Zbl 1492.16024) Full Text: DOI arXiv OpenURL
Yurduşen, İsmet; Escobar-Ruiz, Adrián Mauricio; Montoya, Irlanda Palma y. Meza Doubly exotic \(N\)th-order superintegrable classical systems separating in Cartesian coordinates. (English) Zbl 07537221 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 039, 20 p. (2022). MSC: 70H06 70H33 70H50 PDF BibTeX XML Cite \textit{İ. Yurduşen} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 039, 20 p. (2022; Zbl 07537221) Full Text: DOI arXiv OpenURL
Avendaño-Camacho, Misael; García-Mendoza, Claudio César; Ruíz-Pantaleón, José Crispín; Velasco-Barreras, Eduardo Geometrical aspects of the hamiltonization problem of dynamical systems. (English) Zbl 1501.37057 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 038, 29 p. (2022). Reviewer: William J. Satzer Jr. (St. Paul) MSC: 37J06 37J39 53D17 37C86 70G45 37C79 PDF BibTeX XML Cite \textit{M. Avendaño-Camacho} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 038, 29 p. (2022; Zbl 1501.37057) Full Text: DOI arXiv OpenURL
Liu, Si-Qi; Wang, Zhe; Zhang, Youjin Reduction of the 2D Toda hierarchy and linear Hodge integrals. (English) Zbl 1501.53093 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 037, 18 p. (2022). Reviewer: Giulio Landolfi (Lecce) MSC: 53D45 37K10 37K25 PDF BibTeX XML Cite \textit{S.-Q. Liu} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 037, 18 p. (2022; Zbl 1501.53093) Full Text: DOI arXiv OpenURL
Hietala, Linnea A combinatorial description of certain polynomials related to the XYZ spin chain. II: The polynomials \(p_n\). (English) Zbl 1491.82006 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 036, 20 p. (2022). MSC: 82B23 82B20 05A15 33E17 PDF BibTeX XML Cite \textit{L. Hietala}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 036, 20 p. (2022; Zbl 1491.82006) Full Text: DOI arXiv OpenURL
Fagnola, Franco; Ko, Chul Ki; Yoo, Hyun Jae The generalized Fibonacci oscillator as an open quantum system. (English) Zbl 1490.81100 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 035, 19 p. (2022). MSC: 81S22 81S05 60J80 PDF BibTeX XML Cite \textit{F. Fagnola} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 035, 19 p. (2022; Zbl 1490.81100) Full Text: DOI arXiv OpenURL
Mori, Akihito; Murakami, Yuya Witten-Reshetikhin-Turaev invariants, homological blocks, and quantum modular forms for unimodular plumbing H-graphs. (English) Zbl 07537216 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 034, 20 p. (2022). Reviewer: Mohamed Elhamdadi (Tampa) MSC: 57K31 57K10 57K16 11F27 11L05 11T24 PDF BibTeX XML Cite \textit{A. Mori} and \textit{Y. Murakami}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 034, 20 p. (2022; Zbl 07537216) Full Text: DOI arXiv OpenURL
Nakahama, Ryosuke Computation of weighted Bergman inner products on bounded symmetric domains and restriction to subgroups. (English) Zbl 07537215 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 033, 105 p. (2022). MSC: 22E45 43A85 17C30 33C67 PDF BibTeX XML Cite \textit{R. Nakahama}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 033, 105 p. (2022; Zbl 07537215) Full Text: DOI arXiv OpenURL
Nakazono, Nobutaka Properties of the non-autonomous lattice sine-Gordon equation: consistency around a broken cube property. (English) Zbl 1497.37092 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 032, 8 p. (2022). MSC: 37K60 39A36 39A14 PDF BibTeX XML Cite \textit{N. Nakazono}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 032, 8 p. (2022; Zbl 1497.37092) Full Text: DOI arXiv OpenURL
Eastwood, Michael; Moy, Timothy Spinors in five-dimensional contact geometry. (English) Zbl 1492.53016 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 031, 19 p. (2022). MSC: 53B05 53D10 58J10 PDF BibTeX XML Cite \textit{M. Eastwood} and \textit{T. Moy}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 031, 19 p. (2022; Zbl 1492.53016) Full Text: DOI arXiv OpenURL
Higashitani, Akihiro; Nakajima, Yusuke Deformations of dimer models. (English) Zbl 1487.52021 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 030, 53 p. (2022). MSC: 52B20 14M25 14J33 PDF BibTeX XML Cite \textit{A. Higashitani} and \textit{Y. Nakajima}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 030, 53 p. (2022; Zbl 1487.52021) Full Text: DOI arXiv OpenURL
Blaom, Anthony D. A characterisation of smooth maps into a homogeneous space. (English) Zbl 1492.53071 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 029, 15 p. (2022). MSC: 53C30 22A99 53D17 PDF BibTeX XML Cite \textit{A. D. Blaom}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 029, 15 p. (2022; Zbl 1492.53071) Full Text: DOI arXiv OpenURL
Dey, Rukmini; Ghosh, Kohinoor Pullback coherent states, squeezed states and quantization. (English) Zbl 1501.53094 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 028, 14 p. (2022). Reviewer: Tatyana Barron (London, Ontario) MSC: 53D50 53D55 PDF BibTeX XML Cite \textit{R. Dey} and \textit{K. Ghosh}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 028, 14 p. (2022; Zbl 1501.53094) Full Text: DOI arXiv OpenURL
Dunajski, Maciej Twistor theory of dancing paths. (English) Zbl 1487.32112 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 027, 13 p. (2022). MSC: 32L25 53A20 PDF BibTeX XML Cite \textit{M. Dunajski}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 027, 13 p. (2022; Zbl 1487.32112) Full Text: DOI arXiv OpenURL
Ibraev, Sherali Sh. Cohomology of \(\mathfrak{sl}_3\) and \(\mathfrak{gl}_3\) with coefficients in simple modules and Weyl modules in positive characteristics. (English) Zbl 1492.17011 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 026, 17 p. (2022). Reviewer: Wilberd van der Kallen (Utrecht) MSC: 17B20 17B45 20G05 PDF BibTeX XML Cite \textit{S. Sh. Ibraev}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 026, 17 p. (2022; Zbl 1492.17011) Full Text: DOI arXiv OpenURL
Baseilhac, Stéphane; Roche, Philippe Unrestricted quantum moduli algebras. I: The case of punctured spheres. (English) Zbl 07516856 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 025, 78 p. (2022). MSC: 17B37 20G42 57M27 57R56 81R50 16T05 PDF BibTeX XML Cite \textit{S. Baseilhac} and \textit{P. Roche}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 025, 78 p. (2022; Zbl 07516856) Full Text: DOI arXiv OpenURL
Bogo, Gabriele Accessory parameters for four-punctured spheres. (English) Zbl 1486.30117 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 024, 20 p. (2022). MSC: 30F35 34M03 32G15 PDF BibTeX XML Cite \textit{G. Bogo}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 024, 20 p. (2022; Zbl 1486.30117) Full Text: DOI arXiv OpenURL
Al-Kaabi, Mahdi J. Hasan; Ebrahimi-Fard, Kurusch; Manchon, Dominique Post-Lie Magnus expansion and BCH-recursion. (English) Zbl 1500.16034 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 023, 16 p. (2022). Reviewer: Laurent Poinsot (Villetaneuse) MSC: 16T05 16T10 16T30 17A30 PDF BibTeX XML Cite \textit{M. J. H. Al-Kaabi} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 023, 16 p. (2022; Zbl 1500.16034) Full Text: DOI arXiv OpenURL
Meljanac, Stjepan; Štrajn, Rina Deformed quantum phase spaces, realizations, star products and twists. (English) Zbl 1489.81041 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 022, 20 p. (2022). MSC: 81R60 14D15 53D55 81R25 PDF BibTeX XML Cite \textit{S. Meljanac} and \textit{R. Štrajn}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 022, 20 p. (2022; Zbl 1489.81041) Full Text: DOI arXiv OpenURL
Garoufalidis, Stavros; Scheidegger, Emanuel On the quantum \(K\)-theory of the quintic. (English) Zbl 1487.14120 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 021, 20 p. (2022). Reviewer: Vehbi Emrah Paksoy (Fort Lauderdale) MSC: 14N35 53D45 39A13 19E20 PDF BibTeX XML Cite \textit{S. Garoufalidis} and \textit{E. Scheidegger}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 021, 20 p. (2022; Zbl 1487.14120) Full Text: DOI arXiv OpenURL
Morand, Kevin A note on multi-oriented graph complexes and deformation quantization of Lie bialgebroids. (English) Zbl 1490.53105 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 020, 38 p. (2022). MSC: 53D55 18G85 17B62 PDF BibTeX XML Cite \textit{K. Morand}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 020, 38 p. (2022; Zbl 1490.53105) Full Text: DOI OpenURL
Valero, Carlos; Mclenaghan, Raymond G. Classification of the orthogonal separable webs for the Hamilton-Jacobi and Klein-Gordon equations on 3-dimensional Minkowski space. (English) Zbl 1494.53109 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 019, 28 p. (2022). Reviewer: David Tennyson (London) MSC: 53Z05 53A60 70H20 83A05 PDF BibTeX XML Cite \textit{C. Valero} and \textit{R. G. Mclenaghan}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 019, 28 p. (2022; Zbl 1494.53109) Full Text: DOI arXiv OpenURL
Flandoli, Ilaria; Lentner, Simon D. Algebras of non-local screenings and diagonal Nichols algebras. (English) Zbl 07501814 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 018, 81 p. (2022). Reviewer: Sonia Natale (Córdoba) MSC: 16T05 17B69 PDF BibTeX XML Cite \textit{I. Flandoli} and \textit{S. D. Lentner}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 018, 81 p. (2022; Zbl 07501814) Full Text: DOI arXiv OpenURL
Alhamzi, Ghaliah; Beggs, Edwin The exponential map for Hopf algebras. (English) Zbl 1496.16033 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 017, 17 p. (2022). Reviewer: Salih Çelik (İstanbul) MSC: 16T05 46L87 58B32 PDF BibTeX XML Cite \textit{G. Alhamzi} and \textit{E. Beggs}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 017, 17 p. (2022; Zbl 1496.16033) Full Text: DOI arXiv OpenURL
Adamo, Tim; Mason, Lionel; Sharma, Atul Celestial \(w_{1+\infty}\) symmetries from twistor space. (English) Zbl 1489.83067 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 016, 23 p. (2022). MSC: 83C60 81U20 32L25 22E67 31C45 35J05 70G45 17B69 PDF BibTeX XML Cite \textit{T. Adamo} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 016, 23 p. (2022; Zbl 1489.83067) Full Text: DOI arXiv OpenURL
Schwieger, Kay; Wagner, Stefan An Atiyah sequence for noncommutative principal bundles. (English) Zbl 1495.46058 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 015, 22 p. (2022). MSC: 46L87 46L85 55R10 PDF BibTeX XML Cite \textit{K. Schwieger} and \textit{S. Wagner}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 015, 22 p. (2022; Zbl 1495.46058) Full Text: DOI arXiv OpenURL
Kaneko, Jyoichi \(q\)-Selberg integrals and Koornwinder polynomials. (English) Zbl 07484050 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 014, 35 p. (2022). MSC: 33D52 05A30 11B65 PDF BibTeX XML Cite \textit{J. Kaneko}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 014, 35 p. (2022; Zbl 07484050) Full Text: DOI arXiv OpenURL
Chen, Zhijie; Lin, Chang-Shou; Yang, Yifan Modular ordinary differential equations on \(\mathrm{SL}(2,\mathbb{Z})\) of third order and applications. (English) Zbl 1489.11062 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 013, 50 p. (2022). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 11F11 34M03 PDF BibTeX XML Cite \textit{Z. Chen} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 013, 50 p. (2022; Zbl 1489.11062) Full Text: DOI arXiv OpenURL
Bauer, Michel A quantum \(0\)-\(\infty\) law. (English) Zbl 1493.46018 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 012, 12 p. (2022). MSC: 46B09 46C05 60J05 PDF BibTeX XML Cite \textit{M. Bauer}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 012, 12 p. (2022; Zbl 1493.46018) Full Text: DOI arXiv OpenURL
Khavkine, Igor Explicit triangular decoupling of the separated Lichnerowicz tensor wave equation on Schwarzschild into scalar Regge-Wheeler equations. (English) Zbl 1490.35488 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 011, 57 p. (2022). MSC: 35Q75 34B24 34L05 68W30 83C57 83C10 83C35 83C05 83C22 PDF BibTeX XML Cite \textit{I. Khavkine}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 011, 57 p. (2022; Zbl 1490.35488) Full Text: DOI arXiv OpenURL
Ayano, Takanori; Buchstaber, Victor M. Relationships between hyperelliptic functions of genus 2 and elliptic functions. (English) Zbl 1481.14057 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 010, 30 p. (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14H40 14H42 14K25 32A20 33E05 PDF BibTeX XML Cite \textit{T. Ayano} and \textit{V. M. Buchstaber}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 010, 30 p. (2022; Zbl 1481.14057) Full Text: DOI arXiv OpenURL
Klyuev, Daniil Twisted traces and positive forms on generalized \(q\)-Weyl algebras. (English) Zbl 07484045 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 009, 28 p. (2022). MSC: 17B37 53D55 81R10 PDF BibTeX XML Cite \textit{D. Klyuev}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 009, 28 p. (2022; Zbl 07484045) Full Text: DOI arXiv OpenURL