Kleiman, Steven; Piene, Ragni Node polynomials for curves on surfaces. (English) Zbl 07569539 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 059, 23 p. (2022). MSC: 14N10 14C20 14H40 14K05 PDF BibTeX XML Cite \textit{S. Kleiman} and \textit{R. Piene}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 059, 23 p. (2022; Zbl 07569539) Full Text: DOI OpenURL
Tashiro, Kenshiro Systolic inequalities for compact quotients of Carnot groups with Popp’s volume. (English) Zbl 07569538 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 058, 16 p. (2022). MSC: 53C17 26B15 22E25 PDF BibTeX XML Cite \textit{K. Tashiro}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 058, 16 p. (2022; Zbl 07569538) Full Text: DOI OpenURL
Wulff, Christopher Equivariant coarse (co-)homology theories. (English) Zbl 07569537 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 057, 62 p. (2022). MSC: 51F30 55N35 46L85 PDF BibTeX XML Cite \textit{C. Wulff}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 057, 62 p. (2022; Zbl 07569537) Full Text: DOI OpenURL
Sasaki, Shoko; Takagi, Shun; Takemura, Kouichi \(q\)-middle convolution and \(q\)-Painlevé equation. (English) Zbl 07569536 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 056, 21 p. (2022). MSC: 33E10 34M55 39A13 PDF BibTeX XML Cite \textit{S. Sasaki} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 056, 21 p. (2022; Zbl 07569536) Full Text: DOI OpenURL
Gammage, Benjamin; Le, Ian Mirror symmetry for truncated cluster varieties. (English) Zbl 07569535 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 055, 30 p. (2022). MSC: 53D37 13F60 PDF BibTeX XML Cite \textit{B. Gammage} and \textit{I. Le}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 055, 30 p. (2022; Zbl 07569535) Full Text: DOI OpenURL
Liu, Meijun; Liu, Jiefeng; Sheng, Yunhe Deformations and cohomologies of relative Rota-Baxter operators on Lie algebroids and Koszul-Vinberg structures. (English) Zbl 07569534 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 054, 26 p. (2022). MSC: 53D17 53C25 58A12 17B70 PDF BibTeX XML Cite \textit{M. Liu} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 054, 26 p. (2022; Zbl 07569534) Full Text: DOI OpenURL
Kaufmann, Ralph M.; Mo, Yang Pathlike co/bialgebras and their antipodes with applications to bi- and Hopf algebras appearing in topology, number theory and physics. (English) Zbl 07569533 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 053, 42 p. (2022). MSC: 16T05 18M85 81T15 81R50 PDF BibTeX XML Cite \textit{R. M. Kaufmann} and \textit{Y. Mo}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 053, 42 p. (2022; Zbl 07569533) Full Text: DOI OpenURL
Alekseev, Vadim; Thom, Andreas Maximal discrete subgroups in unitary groups of operator algebras. (English) Zbl 07569532 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 052, 7 p. (2022). MSC: 46L10 22E40 20F38 PDF BibTeX XML Cite \textit{V. Alekseev} and \textit{A. Thom}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 052, 7 p. (2022; Zbl 07569532) Full Text: DOI OpenURL
Feigin, Boris; Jimbo, Michio; Mukhin, Evgeny Quantum toroidal comodule algebra of type \(A_{n-1}\) and integrals of motion. (English) Zbl 07569531 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 051, 31 p. (2022). MSC: 81R10 81R12 17B69 17B80 PDF BibTeX XML Cite \textit{B. Feigin} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 051, 31 p. (2022; Zbl 07569531) Full Text: DOI OpenURL
Ueda, Yoshimichi Spherical representations of \(C^\ast\)-flows. II: Representation system and quantum group setup. (English) Zbl 07557716 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 050, 43 p. (2022). MSC: 22D25 22E66 46L67 17B37 PDF BibTeX XML Cite \textit{Y. Ueda}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 050, 43 p. (2022; Zbl 07557716) Full Text: DOI OpenURL
Endo, Taiki; Katori, Makoto; Sakuma, Noriyoshi Functional equations solving initial-value problems of complex Burgers-type equations for one-dimensional log-gases. (English) Zbl 07557715 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 049, 22 p. (2022). MSC: 82C22 60B20 44A15 46L54 PDF BibTeX XML Cite \textit{T. Endo} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 049, 22 p. (2022; Zbl 07557715) Full Text: DOI OpenURL
Verschoor, Carlo On the monodromy invariant Hermitian form for \(A\)-hypergeometric systems. (English) Zbl 07557714 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 048, 14 p. (2022). Reviewer: Vladimir P. Kostov (Nice) MSC: 14D05 33C70 PDF BibTeX XML Cite \textit{C. Verschoor}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 048, 14 p. (2022; Zbl 07557714) Full Text: DOI OpenURL
Simanek, Brian Determinantal formulas for exceptional orthogonal polynomials. (English) Zbl 07557713 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 047, 16 p. (2022). MSC: 42C05 33C47 PDF BibTeX XML Cite \textit{B. Simanek}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 047, 16 p. (2022; Zbl 07557713) Full Text: DOI OpenURL
Böhm, Janko; Goldner, Christoph; Markwig, Hannah Tropical mirror symmetry in dimension one. (English) Zbl 07557712 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 046, 30 p. (2022). MSC: 14J33 14N35 14T05 81T18 11F11 14H30 14N10 14H52 14H81 PDF BibTeX XML Cite \textit{J. Böhm} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 046, 30 p. (2022; Zbl 07557712) Full Text: DOI OpenURL
Albonico, Giulia; Geyer, Yvonne; Mason, Lionel From twistor-particle models to massive amplitudes. (English) Zbl 07557711 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 045, 21 p. (2022). MSC: 81U20 83C60 32L25 81T30 81T13 PDF BibTeX XML Cite \textit{G. Albonico} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 045, 21 p. (2022; Zbl 07557711) Full Text: DOI OpenURL
Gough, John E. Field calculus: Quantum and statistical field theory without the Feynman diagrams. (English) Zbl 07557710 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 044, 15 p. (2022). MSC: 81T18 05C75 81S25 PDF BibTeX XML Cite \textit{J. E. Gough}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 044, 15 p. (2022; Zbl 07557710) Full Text: DOI OpenURL
Wen, Yaoxinog Difference equation for quintic 3-fold. (English) Zbl 07557709 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 043, 25 p. (2022). Reviewer: Vladimir P. Kostov (Nice) MSC: 14N35 33D90 39A13 PDF BibTeX XML Cite \textit{Y. Wen}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 043, 25 p. (2022; Zbl 07557709) Full Text: DOI OpenURL
Haïoun, Benjamin Relating stated skein algebras and internal skein algebras. (English) Zbl 07557708 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 042, 39 p. (2022). MSC: 57K16 18M15 PDF BibTeX XML Cite \textit{B. Haïoun}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 042, 39 p. (2022; Zbl 07557708) Full Text: DOI OpenURL
Bi, Lijuan; Cohl, Howard S.; Volkmer, Hans Expansion for a fundamental solution of Laplace’s equation in flat-ring cyclide coordinates. (English) Zbl 07557707 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 041, 31 p. (2022). MSC: 35J05 35A08 33C05 33C10 33C15 33C20 33C45 33C47 33C55 33C75 PDF BibTeX XML Cite \textit{L. Bi} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 041, 31 p. (2022; Zbl 07557707) Full Text: DOI OpenURL
Calvert, Kieran; De Martino, Marcelo Dirac operators for the Dunkl angular momentum algebra. (English) Zbl 07537222 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 040, 18 p. (2022). MSC: 16S37 16G99 17B81 20F55 81R10 PDF BibTeX XML Cite \textit{K. Calvert} and \textit{M. De Martino}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 040, 18 p. (2022; Zbl 07537222) Full Text: DOI OpenURL
Yurduşen, İsmet; Escobar-Ruiz, Adrián Mauricio; Montoya, Irlanda Palma y. Meza Doubly exotic \(N\)th-order superintegrable classical systems separating in Cartesian coordinates. (English) Zbl 07537221 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 039, 20 p. (2022). MSC: 70H06 70H33 70H50 PDF BibTeX XML Cite \textit{İ. Yurduşen} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 039, 20 p. (2022; Zbl 07537221) Full Text: DOI OpenURL
Avendaño-Camacho, Misael; García-Mendoza, Claudio César; Ruíz-Pantaleón, José Crispín; Velasco-Barreras, Eduardo Geometrical aspects of the hamiltonization problem of dynamical systems. (English) Zbl 07537220 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 038, 29 p. (2022). MSC: 37J06 37J39 53D17 37C86 70G45 37C79 PDF BibTeX XML Cite \textit{M. Avendaño-Camacho} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 038, 29 p. (2022; Zbl 07537220) Full Text: DOI OpenURL
Liu, Si-Qi; Wang, Zhe; Zhang, Youjin Reduction of the 2D Toda hierarchy and linear Hodge integrals. (English) Zbl 07537219 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 037, 18 p. (2022). MSC: 53D45 37K10 37K25 PDF BibTeX XML Cite \textit{S.-Q. Liu} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 037, 18 p. (2022; Zbl 07537219) Full Text: DOI OpenURL
Hietala, Linnea A combinatorial description of certain polynomials related to the XYZ spin chain. II: The polynomials \(p_n\). (English) Zbl 07537218 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 036, 20 p. (2022). MSC: 82B23 82B20 05A15 33E17 PDF BibTeX XML Cite \textit{L. Hietala}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 036, 20 p. (2022; Zbl 07537218) Full Text: DOI OpenURL
Fagnola, Franco; Ko, Chul Ki; Yoo, Hyun Jae The generalized Fibonacci oscillator as an open quantum system. (English) Zbl 07537217 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 035, 19 p. (2022). MSC: 81S22 81S05 60J80 PDF BibTeX XML Cite \textit{F. Fagnola} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 035, 19 p. (2022; Zbl 07537217) Full Text: DOI OpenURL
Mori, Akihito; Murakami, Yuya Witten-Reshetikhin-Turaev invariants, homological blocks, and quantum modular forms for unimodular plumbing H-graphs. (English) Zbl 07537216 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 034, 20 p. (2022). MSC: 57K31 57K10 57K16 11F27 11L05 11T24 PDF BibTeX XML Cite \textit{A. Mori} and \textit{Y. Murakami}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 034, 20 p. (2022; Zbl 07537216) Full Text: DOI OpenURL
Nakahama, Ryosuke Computation of weighted Bergman inner products on bounded symmetric domains and restriction to subgroups. (English) Zbl 07537215 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 033, 105 p. (2022). MSC: 22E45 43A85 17C30 33C67 PDF BibTeX XML Cite \textit{R. Nakahama}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 033, 105 p. (2022; Zbl 07537215) Full Text: DOI OpenURL
Nakazono, Nobutaka Properties of the non-autonomous lattice sine-Gordon equation: consistency around a broken cube property. (English) Zbl 07516863 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 032, 8 p. (2022). MSC: 37K10 39A14 39A45 PDF BibTeX XML Cite \textit{N. Nakazono}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 032, 8 p. (2022; Zbl 07516863) Full Text: DOI OpenURL
Eastwood, Michael; Moy, Timothy Spinors in five-dimensional contact geometry. (English) Zbl 07516862 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 031, 19 p. (2022). MSC: 53B05 53D10 58J10 PDF BibTeX XML Cite \textit{M. Eastwood} and \textit{T. Moy}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 031, 19 p. (2022; Zbl 07516862) Full Text: DOI OpenURL
Higashitani, Akihiro; Nakajima, Yusuke Deformations of dimer models. (English) Zbl 1487.52021 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 030, 53 p. (2022). MSC: 52B20 14M25 14J33 PDF BibTeX XML Cite \textit{A. Higashitani} and \textit{Y. Nakajima}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 030, 53 p. (2022; Zbl 1487.52021) Full Text: DOI OpenURL
Blaom, Anthony D. A characterisation of smooth maps into a homogeneous space. (English) Zbl 07516860 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 029, 15 p. (2022). MSC: 53C30 22A99 53D17 PDF BibTeX XML Cite \textit{A. D. Blaom}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 029, 15 p. (2022; Zbl 07516860) Full Text: DOI OpenURL
Dey, Rukmini; Ghosh, Kohinoor Pullback coherent states, squeezed states and quantization. (English) Zbl 07516859 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 028, 14 p. (2022). MSC: 53D50 53D55 PDF BibTeX XML Cite \textit{R. Dey} and \textit{K. Ghosh}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 028, 14 p. (2022; Zbl 07516859) Full Text: DOI OpenURL
Dunajski, Maciej Twistor theory of dancing paths. (English) Zbl 1487.32112 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 027, 13 p. (2022). MSC: 32L25 53A20 PDF BibTeX XML Cite \textit{M. Dunajski}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 027, 13 p. (2022; Zbl 1487.32112) Full Text: DOI OpenURL
Ibraev, Sherali Sh. Cohomology of \(\mathfrak{sl}_3\) and \(\mathfrak{gl}_3\) with coefficients in simple modules and Weyl modules in positive characteristics. (English) Zbl 07516857 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 026, 17 p. (2022). Reviewer: Wilberd van der Kallen (Utrecht) MSC: 17B20 17B45 20G05 PDF BibTeX XML Cite \textit{S. Sh. Ibraev}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 026, 17 p. (2022; Zbl 07516857) Full Text: DOI OpenURL
Baseilhac, Stéphane; Roche, Philippe Unrestricted quantum moduli algebras. I: The case of punctured spheres. (English) Zbl 07516856 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 025, 78 p. (2022). MSC: 16R30 17B37 20G42 57M27 57R56 81R50 PDF BibTeX XML Cite \textit{S. Baseilhac} and \textit{P. Roche}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 025, 78 p. (2022; Zbl 07516856) Full Text: DOI OpenURL
Bogo, Gabriele Accessory parameters for four-punctured spheres. (English) Zbl 1486.30117 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 024, 20 p. (2022). MSC: 30F35 34M03 32G15 PDF BibTeX XML Cite \textit{G. Bogo}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 024, 20 p. (2022; Zbl 1486.30117) Full Text: DOI OpenURL
Al-Kaabi, Mahdi J. Hasan; Ebrahimi-Fard, Kurusch; Manchon, Dominique Post-Lie Magnus expansion and BCH-recursion. (English) Zbl 07501819 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 023, 16 p. (2022). Reviewer: Laurent Poinsot (Villetaneuse) MSC: 16T05 16T10 16T30 17A30 PDF BibTeX XML Cite \textit{M. J. H. Al-Kaabi} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 023, 16 p. (2022; Zbl 07501819) Full Text: DOI OpenURL
Meljanac, Stjepan; Štrajn, Rina Deformed quantum phase spaces, realizations, star products and twists. (English) Zbl 07501818 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 022, 20 p. (2022). MSC: 81R60 14D15 53D55 81R25 PDF BibTeX XML Cite \textit{S. Meljanac} and \textit{R. Štrajn}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 022, 20 p. (2022; Zbl 07501818) Full Text: DOI OpenURL
Garoufalidis, Stavros; Scheidegger, Emanuel On the quantum \(K\)-theory of the quintic. (English) Zbl 1487.14120 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 021, 20 p. (2022). Reviewer: Vehbi Emrah Paksoy (Fort Lauderdale) MSC: 14N35 53D45 39A13 19E20 PDF BibTeX XML Cite \textit{S. Garoufalidis} and \textit{E. Scheidegger}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 021, 20 p. (2022; Zbl 1487.14120) Full Text: DOI OpenURL
Morand, Kevin A note on multi-oriented graph complexes and deformation quantization of Lie bialgebroids. (English) Zbl 07501816 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 020, 38 p. (2022). MSC: 53D55 18G85 17B62 PDF BibTeX XML Cite \textit{K. Morand}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 020, 38 p. (2022; Zbl 07501816) Full Text: DOI OpenURL
Valero, Carlos; Mclenaghan, Raymond G. Classification of the orthogonal separable webs for the Hamilton-Jacobi and Klein-Gordon equations on 3-dimensional Minkowski space. (English) Zbl 07501815 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 019, 28 p. (2022). Reviewer: David Tennyson (London) MSC: 53Z05 53A60 70H20 83A05 PDF BibTeX XML Cite \textit{C. Valero} and \textit{R. G. Mclenaghan}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 019, 28 p. (2022; Zbl 07501815) Full Text: DOI OpenURL
Flandoli, Ilaria; Lentner, Simon D. Algebras of non-local screenings and diagonal Nichols algebras. (English) Zbl 07501814 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 018, 81 p. (2022). MSC: 16T05 17B69 PDF BibTeX XML Cite \textit{I. Flandoli} and \textit{S. D. Lentner}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 018, 81 p. (2022; Zbl 07501814) Full Text: DOI OpenURL
Alhamzi, Ghaliah; Beggs, Edwin The exponential map for Hopf algebras. (English) Zbl 07501813 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 017, 17 p. (2022). Reviewer: Salih Çelik (İstanbul) MSC: 16T05 46L87 58B32 PDF BibTeX XML Cite \textit{G. Alhamzi} and \textit{E. Beggs}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 017, 17 p. (2022; Zbl 07501813) Full Text: DOI OpenURL
Adamo, Tim; Mason, Lionel; Sharma, Atul Celestial \(w_{1+\infty}\) symmetries from twistor space. (English) Zbl 07501812 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 016, 23 p. (2022). MSC: 83C60 81U20 32L25 22E67 31C45 35J05 70G45 17B69 PDF BibTeX XML Cite \textit{T. Adamo} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 016, 23 p. (2022; Zbl 07501812) Full Text: DOI OpenURL
Schwieger, Kay; Wagner, Stefan An Atiyah sequence for noncommutative principal bundles. (English) Zbl 07501811 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 015, 22 p. (2022). MSC: 46L87 46L85 55R10 PDF BibTeX XML Cite \textit{K. Schwieger} and \textit{S. Wagner}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 015, 22 p. (2022; Zbl 07501811) Full Text: DOI OpenURL
Kaneko, Jyoichi \(q\)-Selberg integrals and Koornwinder polynomials. (English) Zbl 07484050 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 014, 35 p. (2022). MSC: 33D52 05A30 11B65 PDF BibTeX XML Cite \textit{J. Kaneko}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 014, 35 p. (2022; Zbl 07484050) Full Text: DOI arXiv OpenURL
Chen, Zhijie; Lin, Chang-Shou; Yang, Yifan Modular ordinary differential equations on \(\mathrm{SL}(2,\mathbb{Z})\) of third order and applications. (English) Zbl 07484049 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 013, 50 p. (2022). Reviewer: Pascal Remy (Carrières-sur-Seine) MSC: 11F11 34M03 PDF BibTeX XML Cite \textit{Z. Chen} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 013, 50 p. (2022; Zbl 07484049) Full Text: DOI arXiv OpenURL
Bauer, Michel A quantum \(0\)-\(\infty\) law. (English) Zbl 07484048 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 012, 12 p. (2022). MSC: 46B09 46C05 60J05 PDF BibTeX XML Cite \textit{M. Bauer}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 012, 12 p. (2022; Zbl 07484048) Full Text: DOI arXiv OpenURL
Khavkine, Igor Explicit triangular decoupling of the separated Lichnerowicz tensor wave equation on Schwarzschild into scalar Regge-Wheeler equations. (English) Zbl 07484047 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 011, 57 p. (2022). MSC: 35Q75 34B24 34L05 68W30 83C57 83C10 83C35 83C05 83C22 PDF BibTeX XML Cite \textit{I. Khavkine}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 011, 57 p. (2022; Zbl 07484047) Full Text: DOI arXiv OpenURL
Ayano, Takanori; Buchstaber, Victor M. Relationships between hyperelliptic functions of genus 2 and elliptic functions. (English) Zbl 1481.14057 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 010, 30 p. (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14H40 14H42 14K25 32A20 33E05 PDF BibTeX XML Cite \textit{T. Ayano} and \textit{V. M. Buchstaber}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 010, 30 p. (2022; Zbl 1481.14057) Full Text: DOI arXiv OpenURL
Klyuev, Daniil Twisted traces and positive forms on generalized \(q\)-Weyl algebras. (English) Zbl 07484045 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 009, 28 p. (2022). MSC: 17B37 53D55 81R10 PDF BibTeX XML Cite \textit{D. Klyuev}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 009, 28 p. (2022; Zbl 07484045) Full Text: DOI arXiv OpenURL
Lee, Eunghyun; Raimbekov, Temirlan Simplified forms of the transition probabilities of the two-species ASEP with some initial orders of particles. (English) Zbl 1484.82032 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 008, 24 p. (2022). MSC: 82C22 60J27 82C23 PDF BibTeX XML Cite \textit{E. Lee} and \textit{T. Raimbekov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 008, 24 p. (2022; Zbl 1484.82032) Full Text: DOI arXiv OpenURL
Akemann, Gernot; Byun, Sung-Soo; Kang, Nam-Gyu Scaling limits of planar symplectic ensembles. (English) Zbl 1482.60008 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 007, 40 p. (2022). MSC: 60B20 33C45 33E12 PDF BibTeX XML Cite \textit{G. Akemann} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 007, 40 p. (2022; Zbl 1482.60008) Full Text: DOI arXiv OpenURL
Krichever, Igor; Nekrasov, Nikita Novikov-Veselov symmetries of the two-dimensional \(O(N)\) sigma model. (English) Zbl 1479.14040 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 006, 37 p. (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14H70 17B80 35J10 37K10 37K20 37K30 81R12 PDF BibTeX XML Cite \textit{I. Krichever} and \textit{N. Nekrasov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 006, 37 p. (2022; Zbl 1479.14040) Full Text: DOI arXiv OpenURL
Marquette, Ian; Quesne, Christiane Ladder operators and hidden algebras for shape invariant nonseparable and nondiagonalizable models with quadratic complex interaction. II: Three-dimensional model. (English) Zbl 1484.81031 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 005, 24 p. (2022). MSC: 81Q05 81Q60 81R12 81R15 17B81 47B25 PDF BibTeX XML Cite \textit{I. Marquette} and \textit{C. Quesne}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 005, 24 p. (2022; Zbl 1484.81031) Full Text: DOI arXiv OpenURL
Marquette, Ian; Quesne, Christiane Ladder operators and hidden algebras for shape invariant nonseparable and nondiagonalizable models with quadratic complex interaction. I: two-dimensional model. (English) Zbl 1484.81030 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 004, 11 p. (2022). MSC: 81Q05 81Q60 81R12 81R15 17B81 47B25 PDF BibTeX XML Cite \textit{I. Marquette} and \textit{C. Quesne}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 004, 11 p. (2022; Zbl 1484.81030) Full Text: DOI arXiv OpenURL
Pap, Eric J.; Boer, Daniël; Waalkens, Holger A unified view on geometric phases and exceptional points in adiabatic quantum mechanics. (English) Zbl 1484.81050 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 003, 42 p. (2022). MSC: 81Q70 81Q12 55R91 70H11 53C20 PDF BibTeX XML Cite \textit{E. J. Pap} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 003, 42 p. (2022; Zbl 1484.81050) Full Text: DOI arXiv OpenURL
Aoki, Takashi; Uchida, Shofu Voros coefficients at the origin and at the infinity of the generalized hypergeometric differential equations with a large parameter. (English) Zbl 07468801 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 002, 23 p. (2022). MSC: 33C20 34E20 34M60 PDF BibTeX XML Cite \textit{T. Aoki} and \textit{S. Uchida}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 002, 23 p. (2022; Zbl 07468801) Full Text: DOI arXiv OpenURL
Korotkin, Dmitry; Zograf, Peter Tau function and moduli of meromorphic quadratic differentials. (English) Zbl 1479.14036 SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 001, 10 p. (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14H15 14H70 14K20 30F30 PDF BibTeX XML Cite \textit{D. Korotkin} and \textit{P. Zograf}, SIGMA, Symmetry Integrability Geom. Methods Appl. 18, Paper 001, 10 p. (2022; Zbl 1479.14036) Full Text: DOI arXiv OpenURL
Zhou, Zhengye Orthogonal polynomial stochastic duality functions for multi-species SEP \((2j)\) and multi-species IRW. (English) Zbl 07468799 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 113, 11 p. (2021). MSC: 60K35 PDF BibTeX XML Cite \textit{Z. Zhou}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 113, 11 p. (2021; Zbl 07468799) Full Text: DOI arXiv OpenURL
Kitanine, Nikolai; Kulkarni, Giridhar Form factors of the Heisenberg spin chain in the thermodynamic limit: dealing with complex Bethe roots. (English) Zbl 1484.81094 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 112, 25 p. (2021). MSC: 81U15 81U40 45F05 82B20 82B23 62H20 PDF BibTeX XML Cite \textit{N. Kitanine} and \textit{G. Kulkarni}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 112, 25 p. (2021; Zbl 1484.81094) Full Text: DOI arXiv OpenURL
Minin, Mikhail D.; Pronko, Andrei G. Boundary one-point function of the rational six-vertex model with partial domain wall boundary conditions: explicit formulas and scaling properties. (English) Zbl 1482.82019 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 111, 29 p. (2021). MSC: 82B23 82B20 16T25 37K15 34E05 05A19 05E05 PDF BibTeX XML Cite \textit{M. D. Minin} and \textit{A. G. Pronko}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 111, 29 p. (2021; Zbl 1482.82019) Full Text: DOI arXiv OpenURL
Urano, Satoru A composite order generalization of modular moonshine. (English) Zbl 1483.11080 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 110, 15 p. (2021). MSC: 11F22 11F85 17B69 20C11 20C20 PDF BibTeX XML Cite \textit{S. Urano}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 110, 15 p. (2021; Zbl 1483.11080) Full Text: DOI arXiv OpenURL
Grama, Lino; Oliveira, Ailton R. Scalar curvatures of invariant almost Hermitian structures on generalized flag manifolds. (English) Zbl 07453213 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 109, 30 p. (2021). Reviewer: Rui Albuquerque (Lisboa) MSC: 53C55 53C21 14M15 PDF BibTeX XML Cite \textit{L. Grama} and \textit{A. R. Oliveira}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 109, 30 p. (2021; Zbl 07453213) Full Text: DOI arXiv OpenURL
Demskoi, Dmitry K. The lattice sine-Gordon equation as a superposition formula for an NLS-type system. (English) Zbl 1483.35176 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 108, 10 p. (2021). MSC: 35Q51 35Q55 37K60 37K10 35C08 37K35 PDF BibTeX XML Cite \textit{D. K. Demskoi}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 108, 10 p. (2021; Zbl 1483.35176) Full Text: DOI arXiv OpenURL
Charlton, Steven; Duhr, Claude; Gangl, Herbert Clean single-valued polylogarithms. (English) Zbl 1477.11121 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 107, 34 p. (2021). MSC: 11G55 11M32 33E20 39B32 PDF BibTeX XML Cite \textit{S. Charlton} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 107, 34 p. (2021; Zbl 1477.11121) Full Text: DOI arXiv OpenURL
Bogoliubov, Nikolay; Malyshev, Cyril How to draw a correlation function. (English) Zbl 1479.05028 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 106, 35 p. (2021). MSC: 05A19 05E05 82B23 82B10 PDF BibTeX XML Cite \textit{N. Bogoliubov} and \textit{C. Malyshev}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 106, 35 p. (2021; Zbl 1479.05028) Full Text: DOI arXiv OpenURL
Laptev, Ari; Schimmer, Lukas A sharp Lieb-Thirring inequality for functional difference operators. (English) Zbl 07453209 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 105, 10 p. (2021). MSC: 47B93 47A75 81Q10 PDF BibTeX XML Cite \textit{A. Laptev} and \textit{L. Schimmer}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 105, 10 p. (2021; Zbl 07453209) Full Text: DOI arXiv OpenURL
Koohestani, Masoumeh; Obata, Nobuaki; Tanaka, Hajime Scaling limits for the Gibbs states on distance-regular graphs with classical parameters. (English) Zbl 07453208 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 104, 22 p. (2021). Reviewer: Alexander Belton (Lancaster) MSC: 46L53 60F05 05E30 PDF BibTeX XML Cite \textit{M. Koohestani} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 104, 22 p. (2021; Zbl 07453208) Full Text: DOI arXiv OpenURL
Brown, Francis Invariant differential forms on complexes of graphs and Feynman integrals. (English) Zbl 1479.18013 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 103, 54 p. (2021). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 18G85 11F75 11M32 81Q30 PDF BibTeX XML Cite \textit{F. Brown}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 103, 54 p. (2021; Zbl 1479.18013) Full Text: DOI arXiv OpenURL
LeBrun, Claude Twistors, self-duality, and \(\text{spin}^c\) structures. (English) Zbl 1483.53071 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 102, 11 p. (2021). MSC: 53C27 53C28 57R15 PDF BibTeX XML Cite \textit{C. LeBrun}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 102, 11 p. (2021; Zbl 1483.53071) Full Text: DOI arXiv OpenURL
Frost, Hadleigh The algebraic structure of the KLT relations for gauge and gravity tree amplitudes. (English) Zbl 1480.81091 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 101, 23 p. (2021). MSC: 81T13 81T15 05C05 17B62 PDF BibTeX XML Cite \textit{H. Frost}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 101, 23 p. (2021; Zbl 1480.81091) Full Text: DOI arXiv OpenURL
Schnetz, Oliver; Yeats, Karen \(c_2\) invariants of hourglass chains via quadratic denominator reduction. (English) Zbl 1480.81099 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 100, 26 p. (2021). MSC: 81T18 05E30 14J32 PDF BibTeX XML Cite \textit{O. Schnetz} and \textit{K. Yeats}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 100, 26 p. (2021; Zbl 1480.81099) Full Text: DOI arXiv OpenURL
Craw, Alastair; Gammelgaard, Søren; Gyenge, Ádám; Szendrői, Balázs Quot schemes for Kleinian orbifolds. (English) Zbl 07431238 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 099, 21 p. (2021). MSC: 16G20 13A50 14E16 PDF BibTeX XML Cite \textit{A. Craw} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 099, 21 p. (2021; Zbl 07431238) Full Text: DOI arXiv OpenURL
Çetinkaya, Asena; Karp, Dmitrii; Prilepkina, Elena Hypergeometric functions at unit argument: simple derivation of old and new identities. (English) Zbl 07431237 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 098, 25 p. (2021). MSC: 33C20 33C60 33C70 PDF BibTeX XML Cite \textit{A. Çetinkaya} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 098, 25 p. (2021; Zbl 07431237) Full Text: DOI arXiv OpenURL
Park, Jinsung Liouville action for harmonic diffeomorphisms. (English) Zbl 1478.30011 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 097, 16 p. (2021). MSC: 30F10 58E20 14H60 PDF BibTeX XML Cite \textit{J. Park}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 097, 16 p. (2021; Zbl 1478.30011) Full Text: DOI arXiv OpenURL
Boualem, Hassan; Brouzet, Robert Generically, Arnold-Liouville systems cannot be bi-Hamiltonian. (English) Zbl 1484.37063 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 096, 17 p. (2021). Reviewer: Ahmed Lesfari (El Jadida) MSC: 37J35 37J39 37J06 70H06 PDF BibTeX XML Cite \textit{H. Boualem} and \textit{R. Brouzet}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 096, 17 p. (2021; Zbl 1484.37063) Full Text: DOI arXiv OpenURL
Crespo, Teresa; Hajto, Zbigniew; Mohseni, Rouzbeh Real Liouvillian extensions of partial differential fields. (English) Zbl 07431234 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 095, 16 p. (2021). Reviewer: Michael F. Singer (Raleigh) MSC: 12H05 37J35 12D15 14P05 PDF BibTeX XML Cite \textit{T. Crespo} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 095, 16 p. (2021; Zbl 07431234) Full Text: DOI arXiv OpenURL
Thürigen, Johannes Renormalization in combinatorially non-local field theories: the BPHZ momentum scheme. (English) Zbl 1480.81097 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 094, 14 p. (2021). MSC: 81T15 81T18 81T32 05C10 16T05 16T30 PDF BibTeX XML Cite \textit{J. Thürigen}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 094, 14 p. (2021; Zbl 1480.81097) Full Text: DOI arXiv OpenURL
Cho, Aye Aye; Mesfun, Maebel; Zhang, Da-Jun A revisit to the ABS H2 equation. (English) Zbl 1477.35216 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 093, 19 p. (2021). MSC: 35Q53 37K60 37K10 37K35 PDF BibTeX XML Cite \textit{A. A. Cho} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 093, 19 p. (2021; Zbl 1477.35216) Full Text: DOI arXiv OpenURL
Arkani-Hamed, Nima; He, Song; Lam, Thomas Cluster configuration spaces of finite type. (English) Zbl 1484.13049 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 092, 41 p. (2021). Reviewer: Stefano Serpente (Roma) MSC: 13F60 05E14 14N99 81T30 PDF BibTeX XML Cite \textit{N. Arkani-Hamed} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 092, 41 p. (2021; Zbl 1484.13049) Full Text: DOI arXiv OpenURL
Pogrebkov, Andrei K. Negative times of the Davey-Stewartson integrable hierarchy. (English) Zbl 1483.37085 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 091, 12 p. (2021). MSC: 37K10 35Q51 PDF BibTeX XML Cite \textit{A. K. Pogrebkov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 091, 12 p. (2021; Zbl 1483.37085) Full Text: DOI arXiv OpenURL
Hitchin, Nigel J. Spinors, twistors and classical geometry. (English) Zbl 07431229 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 090, 9 p. (2021). MSC: 14H60 32L25 PDF BibTeX XML Cite \textit{N. J. Hitchin}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 090, 9 p. (2021; Zbl 07431229) Full Text: DOI arXiv OpenURL
Aokage, Kazuya; Shinkawa, Eriko; Yamada, Hiro-Fumi Virasoro action on the \(Q\)-functions. (English) Zbl 07431228 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 089, 12 p. (2021). MSC: 17B68 05E10 PDF BibTeX XML Cite \textit{K. Aokage} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 089, 12 p. (2021; Zbl 07431228) Full Text: DOI arXiv OpenURL
Kuznetsova, Maria N. Lax pair for a novel two-dimensional lattice. (English) Zbl 1483.37093 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 088, 13 p. (2021). MSC: 37K60 37K30 37K10 39A36 PDF BibTeX XML Cite \textit{M. N. Kuznetsova}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 088, 13 p. (2021; Zbl 1483.37093) Full Text: DOI arXiv OpenURL
Borinsky, Michael; Dunne, Gerald V.; Meynig, Max Semiclassical trans-series from the perturbative Hopf-algebraic Dyson-Schwinger equations: \(\phi^3\) QFT in 6 dimensions. (English) Zbl 1480.81096 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 087, 26 p. (2021). MSC: 81T15 81Q15 34E10 81T16 16T05 PDF BibTeX XML Cite \textit{M. Borinsky} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 087, 26 p. (2021; Zbl 1480.81096) Full Text: DOI arXiv OpenURL
Foissy, Loïc Algebraic structures on typed decorated rooted trees. (English) Zbl 07431225 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 086, 28 p. (2021). MSC: 17A30 16T05 18M60 05C05 17B35 16T30 17D25 PDF BibTeX XML Cite \textit{L. Foissy}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 086, 28 p. (2021; Zbl 07431225) Full Text: DOI arXiv OpenURL
Branahl, Johannes; Hock, Alexander; Wulkenhaar, Raimar Perturbative and geometric analysis of the quartic Kontsevich model. (English) Zbl 1480.81098 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 085, 33 p. (2021). MSC: 81T18 81T16 14H81 32A20 PDF BibTeX XML Cite \textit{J. Branahl} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 085, 33 p. (2021; Zbl 1480.81098) Full Text: DOI arXiv OpenURL
Meljanac, Stjepan; Štrajn, Rina Exponential formulas, normal ordering and the Weyl-Heisenberg algebra. (English) Zbl 07431223 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 084, 7 p. (2021). MSC: 16S32 81R60 PDF BibTeX XML Cite \textit{S. Meljanac} and \textit{R. Štrajn}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 084, 7 p. (2021; Zbl 07431223) Full Text: DOI arXiv OpenURL
Edwards, James P.; Mata, C. Moctezuma; Müller, Uwe; Schubert, Christian New techniques for worldline integration. (English) Zbl 07425540 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 065, 19 p. (2021). MSC: 11B68 33C65 81Q30 PDF BibTeX XML Cite \textit{J. P. Edwards} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 065, 19 p. (2021; Zbl 07425540) Full Text: DOI arXiv OpenURL
Gracey, John A. Generalized Gross-Neveu universality class with non-abelian symmetry. (English) Zbl 1479.81051 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 064, 20 p. (2021). MSC: 81T17 81T18 81V25 82B27 PDF BibTeX XML Cite \textit{J. A. Gracey}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 064, 20 p. (2021; Zbl 1479.81051) Full Text: DOI arXiv OpenURL
Derkachov, Sergey É.; Kozlowski, Karol K.; Manashov, Alexander N. Completeness of SoV representation for \(\mathrm{SL}(2,\mathbb{R})\) spin chains. (English) Zbl 07425538 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 063, 26 p. (2021). MSC: 82-XX 33C70 81R12 PDF BibTeX XML Cite \textit{S. É. Derkachov} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 063, 26 p. (2021; Zbl 07425538) Full Text: DOI arXiv OpenURL
Botvinnik, Boris; Piazza, Paolo; Rosenberg, Jonathan Positive scalar curvature on spin pseudomanifolds: the fundamental group and secondary invariants. (English) Zbl 07425537 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 062, 39 p. (2021). MSC: 53C21 58J22 53C27 19L41 55N22 58J28 PDF BibTeX XML Cite \textit{B. Botvinnik} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 062, 39 p. (2021; Zbl 07425537) Full Text: DOI arXiv OpenURL
Doubrov, Boris; Machida, Yoshinori; Morimoto, Tohru Extrinsic geometry and linear differential equations. (English) Zbl 07425536 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 061, 60 p. (2021). MSC: 53A55 53C24 53C30 53D10 PDF BibTeX XML Cite \textit{B. Doubrov} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 061, 60 p. (2021; Zbl 07425536) Full Text: DOI arXiv OpenURL
Bruce, Andrew James; Ibarguëngoytia, Eduardo; Poncin, Norbert Linear \(\mathbb{Z}_2^n\)-manifolds and linear actions. (English) Zbl 1477.58004 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 060, 58 p. (2021). Reviewer: Hirokazu Nishimura (Tsukuba) MSC: 58A50 58C50 14A22 14L30 13F25 16L30 17A70 PDF BibTeX XML Cite \textit{A. J. Bruce} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 060, 58 p. (2021; Zbl 1477.58004) Full Text: DOI arXiv OpenURL
Bossinger, Lara; Mohammadi, Fatemeh; Nájera Chávez, Alfredo Families of Gröbner degenerations, Grassmannians and universal cluster algebras. (English) Zbl 07425534 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 059, 46 p. (2021). MSC: 13F60 14D06 14M25 14M15 13P10 PDF BibTeX XML Cite \textit{L. Bossinger} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 059, 46 p. (2021; Zbl 07425534) Full Text: DOI arXiv OpenURL
Lacroix, Sylvain; Vicedo, Benoît Integrable \(\mathcal{E}\)-models, 4d Chern-Simons theory and affine Gaudin models. I: Lagrangian aspects. (English) Zbl 07425533 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 058, 45 p. (2021). MSC: 17B80 37K05 37K10 PDF BibTeX XML Cite \textit{S. Lacroix} and \textit{B. Vicedo}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 058, 45 p. (2021; Zbl 07425533) Full Text: DOI arXiv OpenURL
Krynytskyi, Yuri; Rovenchak, Andrij Asymptotic estimation for eigenvalues in the exponential potential and for zeros of \(K_{\mathrm{i}\nu} (z)\) with respect to order. (English) Zbl 07425532 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 057, 7 p. (2021). MSC: 33C10 81Q05 81Q20 PDF BibTeX XML Cite \textit{Y. Krynytskyi} and \textit{A. Rovenchak}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 057, 7 p. (2021; Zbl 07425532) Full Text: DOI arXiv OpenURL
Teo, Lee-Peng Resolvent trace formula and determinants of \(n\) Laplacians on orbifold Riemann surfaces. (English) Zbl 1477.30036 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 083, 40 p. (2021). MSC: 30F30 11F72 11M36 58J52 PDF BibTeX XML Cite \textit{L.-P. Teo}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 083, 40 p. (2021; Zbl 1477.30036) Full Text: DOI arXiv OpenURL
Hertling, Claus Rank 2 bundles with meromorphic connections with poles of Poincaré rank 1. (English) Zbl 07420107 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 082, 73 p. (2021). Reviewer: Tsvetana Stoyanova (Sofia) MSC: 34M56 34M35 53C07 32S30 PDF BibTeX XML Cite \textit{C. Hertling}, SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 082, 73 p. (2021; Zbl 07420107) Full Text: DOI arXiv OpenURL