×

What is a complex system? (English) Zbl 1267.03022

Summary: Complex systems research is becoming ever more important in both the natural and social sciences. It is commonly implied that there is such a thing as a complex system, different examples of which are studied across many disciplines. However, there is no concise definition of a complex system, let alone a definition on which all scientists agree. We review various attempts to characterize a complex system, and consider a core set of features that are widely associated with complex systems in the literature and by those in the field. We argue that some of these features are neither necessary nor sufficient for complexity, and that some of them are too vague or confused to be of any analytical use. In order to bring mathematical rigour to the issue we then review some standard measures of complexity from the scientific literature, and offer a taxonomy for them, before arguing that the one that best captures the qualitative notion of the order produced by complex systems is that of the Statistical Complexity. Finally, we offer our own list of necessary conditions as a characterization of complexity. These conditions are qualitative and may not be jointly sufficient for complexity. We close with some suggestions for future work.

MSC:

03A10 Logic in the philosophy of science
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, P. W. (1972). More is different: Broken symmerty and the nature of the hierarchical structure of science. Science, 177, 393–396. · doi:10.1126/science.177.4047.393
[2] Brian Arthur, W. (1999). Complexity and the economy. Science, 284, 107–109. · doi:10.1126/science.284.5411.107
[3] Badii, R., & Politi, A. (1999). Complexity: Hierarchical structures and scaling in physics. Cambridge University Press. · Zbl 0997.00541
[4] Bennett, C. H. (1988). Logical depth and physical complexity. In R. Herken, (Ed.), The universal Turing machine, a half-century survey (pp. 227–257). Oxford: Oxford University Press.
[5] Cooper, J. M. (Ed.) (1997). Phaedrus in Plato complete works. Hackett.
[6] Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd edn.). Wiley-Blackwell, September. · Zbl 1140.94001
[7] Crutchfield, J. P. (1994). The calculi of emergence: Computation, dynamics and induction. Physica D: Nonlinear Phenomena, 75(1–3), 11–54. · Zbl 0860.68046 · doi:10.1016/0167-2789(94)90273-9
[8] Crutchfield, J. P., & Shalizi, C. R. (1999). Thermodynamic depth of causal states: Objective complexity via minimal representations. Physical Review E, 59(1), 275–283. · doi:10.1103/PhysRevE.59.275
[9] Crutchfield, J. P., & Young, K. (1989). Inferring statistical complexity. Physical Review Letters, 63, 105. · doi:10.1103/PhysRevLett.63.105
[10] Crutchfield, J. P., & Young, K. (1990). Computation at the onset of chaos. Entropy, Complexity and the Physics of Information, SFI Studies in the Sciences of Complexity, VIII, 223–269.
[11] Dennett, D. (1991). Real patterns. The Journal of Philosophy, 88(1), 27–51. · doi:10.2307/2027085
[12] Editorial. (2009). No man is an island. Nature Physics, 5, 1.
[13] Feynman, R. (2000). Feynman lectures on computation. Westview Press. · Zbl 1056.01015
[14] Foote, R. (2007). Mathematics and complex systems. Science, 318, 410–412. · Zbl 1226.00029 · doi:10.1126/science.1141754
[15] Gell-Mann, M. (1995). What is complexity. Complexity, 1, 1. · Zbl 0881.00006 · doi:10.1002/cplx.6130010105
[16] Gell-Mann, M., &amp; Lloyd, S. (1996). Information measures, effective complexity, and total information. Complexity, 2(1), 44–52. · Zbl 1294.94011 · doi:10.1002/(SICI)1099-0526(199609/10)2:1<44::AID-CPLX10>3.0.CO;2-X
[17] Gell-Mann, M., &amp; Lloyd, S. (2004). Effective complexity. In M. Gell-Mann, &amp; C. Tsallis, (Eds.), Nonextensive entropy – interdisciplinary applications. The Santa Fe Institute, OUP USA.
[18] Goldenfeld, N., &amp; Kadanoff, L. P. (1999). Simple lessons from complexity. Science, 284, 87–89. · doi:10.1126/science.284.5411.87
[19] Grassberger, P. (1986). Toward a quantitative theory of self-generated complexity. International Journal of Theoretical Physics, 25(9), 907–938. · Zbl 0605.94003 · doi:10.1007/BF00668821
[20] Grassberger, P. (1989). Problems in quantifying self-generated complexity. Helvetica Physica Acta, 62, 489–511.
[21] Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence (new edn.). MIT Press, July.
[22] Holland, J. H. (1992). Complex adaptive systems. Daedalus, 121(1), 17–30.
[23] Jaynes, E. T. (1957a). Information theory and statistical mechanics. The Physical Review, 106(4), 620–630. · Zbl 0084.43701 · doi:10.1103/PhysRev.106.620
[24] Jaynes, E. T. (1957b). Information theory and statistical mechanics, ii. The Physical Review, 108(2), 171–190. · Zbl 0084.43701 · doi:10.1103/PhysRev.108.171
[25] Kolmogorov, A. N. (1965). Three approaches to the quantitive definition of information. Problems of Information Transmission, 1, 1–17. · Zbl 0271.94018
[26] Kolmogorov, A. N. (1983). Combinatorial foundations of information theory and the calculus of probabilities. Russian Mathematical Surveys, 38(4), 29–40. · Zbl 0597.60002 · doi:10.1070/RM1983v038n04ABEH004203
[27] Ladyman, J., Ross, D., Spurrett, D., &amp; Collier, J. (2007). Everything must go: Metaphysics naturalized. Oxford University Press.
[28] Li, C.-B., Yang, H., &amp; Komatsuzaki, T. (2008). Multiscale complex network of protein conformational fluctuations in single-molecule time series. Proceedings of the National Academy of Sciences, 105(2), 536–541. · doi:10.1073/pnas.0707378105
[29] Li, M., &amp; Vitnyi, P. M. B. (2009). An introduction to Kolmogorov complexity and its applications (3rd ed.). Springer, March.
[30] Lloyd, S. (2001). Measures of complexity: A nonexhaustive list. Control Systems Magazine, IEEE, 21, 7–8. · doi:10.1109/MCS.2001.939938
[31] Lloyd, S., &amp; Pagels, H. (1988). Complexity as thermodynamic depth. Annals of Physics, 188, 186–213. · doi:10.1016/0003-4916(88)90094-2
[32] MacKay, R. S. (2008). Nonlinearity in complexity science. Nonlinearity, 21, T273. · Zbl 1151.00312 · doi:10.1088/0951-7715/21/12/T03
[33] Mainzer, K. (1994). Thinking in complexity: The complex dynamics of matter, mind and mankind. Springer. · Zbl 0866.00019
[34] Merricks, T. (2001). Objects and persons. Oxford University Press.
[35] Mitchell, S. (2009). Unsimple truths: Science, complexity, and policy. University of Chicago Press.
[36] Morin, E., &amp; Belanger, J. L. R. (1992). Method: Towards a study of humankind : The nature of nature: 001. Peter Lang Pub Inc, November.
[37] Paley, W. (2006). Natural theology. Oxford University Press.
[38] Palmer, A. J., Fairall, C. W., &amp; Brewer, W. A. (2000). Complexity in the atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 38(4), 2056–2063. · doi:10.1109/36.851786
[39] Parrish, J. K., &amp; Edelstein-Keshet, L. (1999). Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 284, 99–101. · doi:10.1126/science.284.5411.99
[40] Rind, D. (1999). Complexity and climate. Science, 284, 105–107. · doi:10.1126/science.284.5411.105
[41] Ross, D. (2000). Rainforrest realism: A Dennettian theory of existence. In D. Ross (Ed.), Dennett’s philosophy: A comprehensive assessment (Chapter 8, pp. 147–168). MIT Press.
[42] Shalizi, C. R., &amp; Crutchfield, J. P. (2001). Computational mechanics: Pattern and prediction, structure and simplicity. Journal of Statistical Physics, 104(3), 817–879. · Zbl 1100.82500 · doi:10.1023/A:1010388907793
[43] Shalizi, C. R., &amp; Moore, C. (2003). What is a macrostate? Subjective observations and objective dynamics. cond-mat/0303625.
[44] Shalizi, C. R., Shalizi, K. L., &amp; Haslinger, R. (2004). Quantifying self-organization with optimal predictors. Physical Review Letters, 93(11), 118701. · doi:10.1103/PhysRevLett.93.118701
[45] Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423; 623–656. · Zbl 1154.94303
[46] Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467–482.
[47] Timpson, C. G. (2006). The grammar of teleportation. British Journal of Philosophy of Science, 57(3), 587–621. · doi:10.1093/bjps/axl016
[48] Wackerbauer, R., Witt, A., Atmanspacher, H., Kurths, J., &amp; Scheingraber, H. (1994). A comparative classification of complexity measures. Chaos, Solitons &amp; Fractals, 4(1), 133–173. · Zbl 0793.60118 · doi:10.1016/0960-0779(94)90023-X
[49] Wallace, D. (2003). Everett and structure. Studies In History and Philosophy of Modern Physics, 34(1), 87–105. · Zbl 1222.81091 · doi:10.1016/S1355-2198(02)00085-0
[50] Weng, G., Bhalla, U. S., &amp; Iyengar, R. (1999). Complexity in biological signaling systems. Science, 284, 92–96. · doi:10.1126/science.284.5411.92
[51] Werner, B. T. (1999). Complexity in natural landform patterns. Science, 284, 102–104. · doi:10.1126/science.284.5411.102
[52] Whitesides, G. M., &amp; Ismagilov, R. F. (1999). Complexity in chemistry. Science, 284, 89–92. · doi:10.1126/science.284.5411.89
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.