×

A class of high-order Runge-Kutta-Chebyshev stability polynomials. (English) Zbl 1349.65225

Summary: The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials of arbitrary order \(N\) is presented. Roots of FRKC stability polynomials of degree \(L = M N\) are used to construct explicit schemes comprising \(L\) forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to \(\sim L^2\). The associated stability domain scales as \(M^2\) along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure. By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders above 2, complex splitting or Butcher series composition methods are required. Linear order conditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments.comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher order (4 and 6) split FRKCs schemes are efficient for large moderately stiff problems.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations

Software:

CVODE; PIROCK; RODAS; IRKC; RKC
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Markov, A. A., On a question by DI Mendeleev, Zap. Imp. Akad. Nauk, 62, 1-24 (1890)
[2] Markov, V., On functions deviating least from zero in a given interval, Izdat. Imp. Akad. Nauk, St. Petersburg, 218-258 (1892)
[3] Saul’ev, V., Integration of Parabolic Equations by the Grid Method (1960), Fizmatgiz: Fizmatgiz Moscow
[4] Guillou, A.; Lago, B., Domaine de stabilité associé aux formules d’intégration numérique d’équations différentielles, a pas séparés et a pas liés. Recherche de formules a grand rayon de stabilité, (Ier Congr. Ass. Fran. Calcul., AFCAL (1960)), 43-56 · Zbl 0109.09303
[5] Gentzsch, W.; Schluter, A., On one-step methods with cyclic stepsize changes for solving parabolic differential equations, Z. Angew. Math. Mech., 58, T415-T416 (1978)
[6] van der Houwen, P., The development of Runge-Kutta methods for partial differential equations, Appl. Numer. Math., 20, 261-272 (1996) · Zbl 0857.65094
[7] Alexiades, V.; Amiez, G.; Gremaud, P., Super-time-stepping acceleration of explicit schemes for parabolic problems, Commun. Numer. Methods Eng., 12, 31-42 (1996) · Zbl 0848.65061
[8] O’Sullivan, S.; Downes, T. P., An explicit scheme for multifluid magnetohydrodynamics, Mon. Not. R. Astron. Soc., 366, 1329-1336 (2006)
[9] O’Sullivan, S.; Downes, T. P., A three-dimensional numerical method for modelling weakly ionized plasmas, Mon. Not. R. Astron. Soc., 376, 1648-1658 (2007)
[10] O’Sullivan, S.; O’Sullivan, C., On the acceleration of explicit finite difference methods for option pricing, Quant. Finance, 11, 1177-1191 (2011) · Zbl 1266.91108
[11] Lebedev, V. I., Explicit difference schemes for solving stiff problems with a complex or separable spectrum, Comput. Math. Math. Phys., 40, 1729-1740 (2000) · Zbl 1004.65094
[12] Medovikov, A. A., High order explicit methods for parabolic equations, BIT Numer. Math., 38, 372-390 (1998) · Zbl 0909.65060
[13] van Der Houwen, P. J.; Sommeijer, B. P., On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values, Z. Angew. Math. Mech., 60, 479-485 (1980) · Zbl 0455.65052
[14] Verwer, J. G., Explicit Runge-Kutta methods for parabolic partial differential equations, Appl. Numer. Math., 22, 359-379 (1996) · Zbl 0868.65064
[15] Sommeijer, B.; Shampine, L.; Verwer, J., RKC: an explicit solver for parabolic PDEs, J. Comput. Appl. Math., 88, 315-326 (1998) · Zbl 0910.65067
[16] Abdulle, A.; Medovikov, A. A., Second order Chebyshev methods based on orthogonal polynomials, Numer. Math., 90, 1-18 (2001) · Zbl 0997.65094
[17] Abdulle, A., Fourth order Chebyshev methods with recurrence relation, SIAM J. Sci. Comput., 23, 2041-2054 (2002) · Zbl 1009.65048
[18] Martin-Vaquero, J.; Janssen, B., Second-order stabilized explicit Runge-Kutta methods for stiff problems, Comput. Phys. Commun., 180, 1802-1810 (2009) · Zbl 1197.65006
[19] Meyer, C. D.; Balsara, D. S.; Aslam, T. D., A second-order accurate Super TimeStepping formulation for anisotropic thermal conduction, Mon. Not. R. Astron. Soc., 422, 2102-2115 (2012)
[20] Meyer, C. D.; Balsara, D. S.; Aslam, T. D., A stabilized Runge-Kutta-Legendre method for explicit super-time-stepping of parabolic and mixed equations, J. Comput. Phys., 257, 594-626 (2014) · Zbl 1349.65520
[21] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8 (1993), Springer-Verlag · Zbl 0789.65048
[22] Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2008), John Wiley & Sons: John Wiley & Sons Hoboken, NJ · Zbl 1167.65041
[23] Van Der Houwen, P. J., Construction of Integration Formulas for Initial Value Problems (1977), North Holland · Zbl 0359.65057
[24] Abdulle, A., Chebyshev methods based on orthogonal polynomials (2001), Ph.D. thesis · Zbl 0997.65094
[25] Bakker, M., Analytisch Aspekten Van Een Minimaxprobleem (1971), URL:
[26] Lomax, H., On the construction of highly stable, explicit numerical methods for integrating coupled ODEs with parasitic eigenvalues (1968), NASA Technical Note NASAIN D/4547
[27] Riha, W., Optimal stability polynomials, Computing, 9, 37-43 (1972) · Zbl 0234.65076
[28] Lebedev, V., How to solve stiff systems of differential equations by explicit methods, Numer. Methods Appl., 45-80 (1994) · Zbl 0851.65052
[29] Lebedev, V.; Finogenov, S., Utilization of ordered Chebyshev parameters in iterative methods, USSR Comput. Math. Math. Phys., 16, 70-83 (1976) · Zbl 0357.65043
[30] Verwer, J.; Hundsdorfer, W.; Sommeijer, B., Convergence properties of the Runge-Kutta-Chebyshev method, Numer. Math., 57, 157-178 (1990) · Zbl 0697.65072
[31] Hairer, E.; Wanner, G., Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, vol. 14 (1996), Springer-Verlag · Zbl 0859.65067
[33] Lebedev, V. I.; Finogenov, S., Solution of the problem of parameter ordering in Chebyshev iteration methods, Zh. Vychisl. Mat. Mat. Fiz., 13, 18-33 (1973) · Zbl 0271.65026
[34] Marchuk, G.; Lebedev, V. I., Numerical Methods in the Theory of Neutron Transport (1986), Harwood Academic Pub.: Harwood Academic Pub. New York, NY
[35] Hundsdorfer, W.; Verwer, J. G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, vol. 33 (2003), Springer
[36] Martín-Vaquero, J.; Khaliq, A.; Kleefeld, B., Stabilized explicit Runge-Kutta methods for multi-asset American options, Comput. Math. Appl., 67, 1293-1308 (2014) · Zbl 1386.91165
[37] Castella, F.; Chartier, P.; Descombes, S.; Vilmart, G., Splitting methods with complex times for parabolic equations, BIT Numer. Math., 49, 487-508 (2009) · Zbl 1180.65106
[38] Hansen, E.; Ostermann, A., High order splitting methods for analytic semigroups exist, BIT Numer. Math., 49, 527-542 (2009) · Zbl 1176.65066
[39] Hansen, E.; Ostermann, A., Dimension splitting for quasilinear parabolic equations, IMA J. Numer. Anal., 30, 857-869 (2010) · Zbl 1211.65117
[40] Dörsek, P.; Hansen, E., High order splitting schemes with complex timesteps and their application in mathematical finance, J. Comput. Appl. Math., 262, 234-243 (2014) · Zbl 1301.65002
[41] McLachlan, R. I.; Quispel, G. R.W., Splitting methods, Acta Numer., 11, 341-434 (2002) · Zbl 1105.65341
[42] Ascher, U. M.; Ruuth, S. J.; Spiteri, R. J., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151-167 (1997) · Zbl 0896.65061
[43] Shampine, L.; Sommeijer, B.; Verwer, J., IRKC: an IMEX solver for stiff diffusion-reaction PDEs, J. Comput. Appl. Math., 196, 485-497 (2006) · Zbl 1100.65075
[44] Abdulle, A.; Vilmart, G., PIROCK: a swiss-knife partitioned implicit-explicit orthogonal Runge-Kutta Chebyshev integrator for stiff diffusion-advection-reaction problems with or without noise, J. Comput. Phys., 242, 869-888 (2013) · Zbl 1297.65110
[45] Cruz, H. D.l.; Biscay, R.; Carbonell, F.; Jimenez, J.; Ozaki, T., Advanced numerical algorithms - Local Linearization Runge-Kutta (llrk) methods for solving ordinary differential equations, Lect. Notes Comput. Sci., 3991, 132-139 (2006) · Zbl 1155.65358
[46] De la Cruz, H.; Biscay, R.; Jiménez, J. C.; Carbonell, F., Local Linearization Runge-Kutta methods: a class of A-stable explicit integrators for dynamical systems, Math. Comput. Model., 57, 720-740 (2013) · Zbl 1305.65171
[48] Lubich, C.; Ostermann, A., Interior estimates for time discretizations of parabolic equations, Appl. Numer. Math., 18, 241-251 (1995) · Zbl 0841.65080
[49] Lubich, C.; Makridakis, C., Interior a posteriori error estimates for time discrete approximations of parabolic problems, Numer. Math., 124, 541-557 (2013) · Zbl 1270.65054
[50] Hundsdorfer, W.; Verwer, J., A note on splitting errors for advection-reaction equations, Appl. Numer. Math., 18, 191-199 (1995) · Zbl 0833.65099
[51] Blanes, S.; Casas, F.; Chartier, P.; Murua, A., Optimized high-order splitting methods for some classes of parabolic equations, Math. Comput., 82, 1559-1576 (2013) · Zbl 1278.65075
[52] Lefever, R.; Nicolis, G., Chemical instabilities and sustained oscillations, J. Theor. Biol., 30, 267-284 (1971) · Zbl 1170.92344
[53] Cohen, S. D.; Hindmarsh, A. C., CVODE, a stiff/nonstiff ODE solver in C, Comput. Phys., 10, 138-143 (1996)
[54] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517 (1968) · Zbl 0184.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.