×

Genotypic selection in spatially heterogeneous producer-grazer systems subject to stoichiometric constraints. (English) Zbl 1430.92053

Summary: Various environmental conditions may exert selection pressures leading to adaptation of stoichiometrically important traits, such as organismal nutritional content or growth rate. We use theoretical approaches to explore the connections between genotypic selection and ecological stoichiometry in spatially heterogeneous environments. We present models of a producer and two grazing genotypes with different stoichiometric phosphorus/carbon ratios under spatially homogenous and heterogeneous conditions. Numerical experiments predict that selection of a single genotype, co-persistence of both genotypes, and extinction are possible outcomes depending on environmental conditions. Our results indicated that in spatially homogenous settings, co-persistence of both genotypes can occur when population dynamics oscillate on limit cycles near a key stoichiometric threshold on food quality. Under spatially heterogeneous settings, dynamics are more complex, where co-persistence is observed on limit cycles, as well as stable equilibria.

MSC:

92D15 Problems related to evolution
92D25 Population dynamics (general)
92D40 Ecology

Software:

Trilinos; Amesos
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abrams, PA, The evolution of predator-prey interactions: theory and evidence, Ann Rev Ecol Syst, 31, 79-105 (2000) · doi:10.1146/annurev.ecolsys.31.1.79
[2] Andersen T (1997) Pelagic nutrient cycles; herbivores as sources and sinks. Springer, Berlin · doi:10.1007/978-3-662-03418-7
[3] Andersen, T.; Elser, JJ; Hessen, DO, Stoichiometry and population dynamics, Ecol Lett, 7, 884-900 (2004) · doi:10.1111/j.1461-0248.2004.00646.x
[4] Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and differential-algebraic equations, vol 61. SIAM, Philadelphia · Zbl 0908.65055 · doi:10.1137/1.9781611971392
[5] Barry RG, Chorley RJ (2003) Atmosphere. Weather and climate. Routledge, London
[6] Bird RB, Stewart WE, Lightfoot EN (2004) Transport phenomena. 2002. Wiley, New York
[7] Cantrell, RS; Cosner, C.; Lou, Y.; Cantrell, S. (ed.); Cosner, C. (ed.); Ruan, S. (ed.), Evolution of dispersal in heterogeneous landscapes, 213-229 (2010), Taylor & Francis Group · Zbl 1173.91013
[8] Cantrell S, Cosner C, Ruan S (2010b) Spatial Ecology. CRC Press, Taylor & Francis Group · Zbl 1173.91013
[9] Dissanayake C (2016) Finite element simulation of space/time behavior in a two species ecological stoichiometric model. Ph.D. thesis, Texas Tech University
[10] Elser, J., Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology, Am Nat, 168, s25-s35 (2006) · doi:10.1086/509048
[11] Gresho PM, Sani RL (1998) Incompressible flow and the finite element method. Volume 1: advection-diffusion and isothermal laminar flow. Wiley, New York · Zbl 0941.76002
[12] Grover, JP, Predation, competition, and nutrient recycling: a stoichiometric approach with multiple nutrients, J Theor Biol, 229, 31-43 (2004) · Zbl 1440.92071 · doi:10.1016/j.jtbi.2004.03.001
[13] Hanski, I.; Cantrell, S. (ed.); Cosner, C. (ed.); Ruan, S. (ed.), Incorporating the spatial configuration of the habitat into ecology and evolutionary biology, 167-188 (2010), Taylor & Francis Group · Zbl 1179.92061
[14] Heroux, MA; Bartlett, RA; Howle, VE; Hoekstra, RJ; Hu, JJ; Kolda, TG; Lehoucq, RB; Long, KR; Pawlowski, RP; Phipps, ET; Salinger, AG; Thornquist, HK; Tuminaro, RS; Willenbring, JM; Williams, A.; Stanley, KS, An overview of the Trilinos project, ACM Trans Math Softw, 31, 397-423 (2005) · Zbl 1136.65354 · doi:10.1145/1089014.1089021
[15] Hessen, DO; Elser, JJ; Sterner, RW; Urabe, J., Ecological stoichiometry: an elementary approach using basic principles, Limnol Oceanogr, 58, 2219-2236 (2013) · doi:10.4319/lo.2013.58.6.2219
[16] Holt, RD; Barfield, M.; Cantrell, S. (ed.); Cosner, C. (ed.); Ruan, S. (ed.), Metapopulation perspectives on the evolution of species’ niches, 188-211 (2010), Taylor & Francis Group · Zbl 1179.92042
[17] Huisman, J.; Sharples, J.; Stroom, JM; Visser, PM; Kardinaal, WEA; Verspagen, JM; Sommeijer, B., Changes in turbulent mixing shift competition for light between phytoplankton species, Ecology, 85, 2960-2970 (2004) · doi:10.1890/03-0763
[18] Imboden, DM; Wüest, A., Mixing mechanisms in lakes, 83-138 (1995), Berlin · doi:10.1007/978-3-642-85132-2_4
[19] Johnson C (2012) Numerical solution of partial differential equations by the finite element method. Courier Corporation
[20] Kay, AD; Ashton, IW; Gorokhova, E.; Kerkhoff, AJ; Liess, A.; Litchman, E., Toward a stoichiometric framework for evolutionary biology, Oikos, 109, 6-17 (2005) · doi:10.1111/j.0030-1299.2005.14048.x
[21] Kelley CT (2003) Solving nonlinear equations with Newton’s method. SIAM, Philadelphia · Zbl 1031.65069 · doi:10.1137/1.9780898718898
[22] Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge · doi:10.1017/CBO9780511623370
[23] Kuefler, D.; Avgar, T.; Fryxell, JM, Rotifer population spread in relation to food, density and predation risk in an experimental system, J Anim Ecol, 81, 323-329 (2012) · doi:10.1111/j.1365-2656.2011.01917.x
[24] Kuefler, D.; Avgar, T.; Fryxell, JM, Density-and resource-dependent movement characteristics in a rotifer, Funct Ecol, 27, 323-328 (2013) · doi:10.1111/1365-2435.12065
[25] Loladze, I.; Kuang, Y.; Elser, JJ, Stoichiometry in producer-grazer systems: linking energy flow with element cycling, Bull Math Biol, 62, 1137-1162 (2000) · Zbl 1323.92098 · doi:10.1006/bulm.2000.0201
[26] Loladze, I.; Kuang, Y.; Elser, JJ; Fagan, WF, Competition and stoichiometry: coexistence of two predators on one prey, Theor Popul Biol, 65, 1-15 (2004) · Zbl 1105.92044 · doi:10.1016/S0040-5809(03)00105-9
[27] Long, K.; Kirby, R.; Bloemen, Waanders B., Unified embedded parallel finite element computations via software-based Fréchet differentiation, SIAM J Sci Comput, 32, 3323-3351 (2010) · Zbl 1221.65306 · doi:10.1137/09076920X
[28] Lorke, A., Investigation of turbulent mixing in shallow lakes using temperature microstructure measurements, Aquat Sci Res Across Bound, 60, 210-219 (1998) · doi:10.1007/s000270050037
[29] Meng, X.; Zhang, L., Evolutionary dynamics in a Lotka-Volterra competition model with impulsive periodic disturbance, Math Methods Appl Sci, 39, 177-188 (2016) · Zbl 1342.92192 · doi:10.1002/mma.3467
[30] Metz, JA; Nisbet, RM; Geritz, SA, How should we define ‘fitness’ for general ecological scenarios?, Trends Ecol Evol, 7, 198-202 (1992) · doi:10.1016/0169-5347(92)90073-K
[31] Moody, EK; Rugenski, AT; Sabo, JL; Turner, BL; Elser, JJ, Does the growth rate hypothesis apply across temperatures? variation in the growth rate and body phosphorus of neotropical benthic grazers, Front Environ Sci, 5, 14 (2017) · doi:10.3389/fenvs.2017.00014
[32] Morozov, A.; Kuzenkov, O., Towards developing a general framework for modelling vertical migration in zooplankton, J Theor Biol, 405, 17-28 (2016) · Zbl 1343.92429 · doi:10.1016/j.jtbi.2016.01.011
[33] Peace, A., Effects of light, nutrients, and food chain length on trophic efficiencies in simple stoichiometric aquatic food chain models, Ecol Model, 312, 125-135 (2015) · doi:10.1016/j.ecolmodel.2015.05.019
[34] Peace, A.; Zhao, Y.; Loladze, I.; Elser, JJ; Kuang, Y., A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics, Math Biosci, 244, 107 (2013) · Zbl 1280.92077 · doi:10.1016/j.mbs.2013.04.011
[35] Peace, A.; Wang, H.; Kuang, Y., Dynamics of a producer-grazer model incorporating the effects of excess food nutrient content on grazer’s growth, Bull Math Biol, 76, 2175-2197 (2014) · Zbl 1300.92086 · doi:10.1007/s11538-014-0006-z
[36] Rana, M.; Dissanayake, C.; Juan, L.; Long, K.; Peace, A., Mechanistically derived heterogeneous producer-grazer model, subject to stoichiometric constraints, Math Biosci Engg, 16, 222-233 (2019) · Zbl 1504.92175 · doi:10.3934/mbe.2019012
[37] Sala M, Stanley K, Heroux M (2006) Amesos: a set of general interfaces to sparse direct solver libraries. In: Proceedings of PARA’06 conference, Umea, Sweden
[38] Shu FH (1991) The physics of astrophysics, vol. 2: radiation. University Science Books, Mill Valley
[39] Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton
[40] Wang, H.; Kuang, Y.; Loladze, I., Dynamics of a mechanistically derived stoichiometric producer-grazer model, J Biol Dyn, 2, 286-296 (2008) · Zbl 1402.92372 · doi:10.1080/17513750701769881
[41] Wang, H.; Sterner, RW; Elser, JJ, On the “strict homeostasis” assumption in ecological stoichiometry, Ecol Model, 243, 81-88 (2012) · doi:10.1016/j.ecolmodel.2012.06.003
[42] Weider, LJ; Makino, W.; Acharya, K.; Glenn, KL; Kyle, M.; Urabe, J.; Elser, JJ, Genotype \(\times\) environment interactions, stoichiometric food quality effects, and clonal coexistence in Daphnia pulex, Oecologia, 143, 537-547 (2005) · doi:10.1007/s00442-005-0003-x
[43] Yamamichi, M.; Meunier, CL; Peace, A.; Prater, C.; Rúa, MA, Rapid evolution of a consumer stoichiometric trait destabilizes consumer-producer dynamics, Oikos, 124, 960-969 (2015) · doi:10.1111/oik.02388
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.