×

Computation of higher order Lie derivatives on the infinity computer. (English) Zbl 1451.65090

Summary: In this paper, we deal with the computation of Lie derivatives, which are required, for example, in some numerical methods for the solution of differential equations. One common way for computing them is to use symbolic computation. Computer algebra software, however, might fail if the function is complicated, and cannot be even performed if an explicit formulation of the function is not available, but we have only an algorithm for its computation. An alternative way to address the problem is to use automatic differentiation. In this case, we only need the implementation of the algorithm that evaluates the function in terms of its analytic expression in a programming language, but we cannot use this if we have only a compiled version of the function. In this paper, we present a novel approach for calculating the Lie derivative of a function, even in the case where its analytical expression is not available, that is based on the Infinity Computer arithmetic. A comparison with symbolic and automatic differentiation shows the potentiality of the proposed technique.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65D25 Numerical differentiation
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Lee, J. M., (Introduction to Smooth Manifolds. Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218 (2006), Springer: Springer New York) · Zbl 1258.53002
[2] Isidori, A., (Nonlinear Control Systems. Nonlinear Control Systems, Communications and Control Engineering (1995), Springer-Verlag London) · Zbl 0878.93001
[3] Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M. S.; Sergeyev, Y. D., Conjugate-symplecticity properties of Euler-Maclaurin methods and their implementation on the infinity computer, Appl. Numer. Math., 155, 58-72 (2020) · Zbl 1440.65273
[4] Iavernaro, F.; Mazzia, F., On conjugate-symplecticity properties of a multi-derivative extension of the midpoint and trapezoidal methods, Rend. Semin. Mat., 76, 2, 123-134 (2018) · Zbl 1440.65034
[5] F. Mazzia, A. Sestini, On a class of conjugate symplectic Hermite-Obreshkov one-step methods with continuous spline extension, Axioms 7 (3). http://dx.doi.org/10.3390/axioms7030058. · Zbl 1432.65017
[6] Günes Baydin, A.; Pearlmutter, B.; Andreyevich Radul, A.; Mark Siskind, J., Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res., 18, 1-43 (2018) · Zbl 06982909
[7] Srajer, F.; Kukelova, Z.; Fitzgibbon, A., A benchmark of selected algorithmic differentiation tools on some problems in computer vision and machine learning, Optim. Methods Softw., 33, 4-6, 889-906 (2018) · Zbl 1453.65050
[8] K. Röbenack, J. Winkler, S. Wang, LIEDRIVERS- a toolbox for the efficient computation of lie derivatives based on the object-oriented algorithmic differentiation package ADOL-C, in: Proceedings of the 4th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, EOOLT 2011, 2011, pp. 57-66.
[9] Röbenack, K., Computation of multiple Lie derivatives by algorithmic differentiation, J. Comput. Appl. Math., 213, 2, 454-464 (2008) · Zbl 1136.93017
[10] Walther, A.; Griewank, A., Getting started with ADOL-C, (Naumann, U.; Schenk, O., Combinatorial Scientific Computing. Combinatorial Scientific Computing, Chapman-Hall CRC Computational Science (2012)), 181-202, Ch. 7 · Zbl 1235.68008
[11] Yu, W.; Blair, M., DNAD, a simple tool for automatic differentiation of fortran codes using dual numbers, Comput. Phys. Comm., 184, 5, 1446-1452 (2013) · Zbl 1315.65023
[12] Fike, J. A.; Alonso, J. J., Automatic differentiation through the use of hyper-dual numbers for second derivatives, (Forth, S.; Hovland, P.; Phipps, E.; Utke, J.; Walther, A.; Barth, T. J.; Griebel, M.; Keyes, D. E.; Nieminen, R. M.; Roose, D.; Schlick, T., Recent Advances in Algorithmic Differentiation. Recent Advances in Algorithmic Differentiation, Lecture Notes in Computational Science and Engineering, vol. 87 (2012), Springer Berlin Heidelberg), 163-173 · Zbl 1251.65026
[13] Fike, J.; Alonso, J., Automatic differentiation through the use of hyper-dual numbers for second derivatives, (Lecture Notes in Computational Science and Engineering. Lecture Notes in Computational Science and Engineering, LNCSE, vol. 87 (2012)), 163-173 · Zbl 1251.65026
[14] G. Lantoine, R. Russell, T. Dargent, Using multicomplex variables for automatic computation of high-order derivatives, ACM Trans. Math. Softw. 38 (3). http://dx.doi.org/10.1145/2168773.2168774. · Zbl 1365.65055
[15] Amodio, P.; Iavernaro, F.; Mazzia, F.; Mukhametzhanov, M. S.; Sergeyev, Y. D., A generalized Taylor method of order three for the solution of initial value problems in standard and infinity floating-point arithmetic, Math. Comput. Simulation, 141, 24-39 (2017) · Zbl 07313861
[16] Sergeyev, Y. D., Solving ordinary differential equations by working with infinitesimals numerically on the infinity computer, Appl. Math. Comput., 219, 22, 10668-10681 (2013) · Zbl 1303.65061
[17] Sergeyev, Y. D.; Mukhametzhanov, M. S.; Mazzia, F.; Iavernaro, F.; Amodio, P., Numerical methods for solving initial value problems on the Infinity Computer, Int. J. Unconv. Comput., 12, 1, 3-23 (2016)
[18] Sergeyev, Y. D., Higher order numerical differentiation on the Infinity Computer, Optim. Lett., 5, 4, 575-585 (2011) · Zbl 1230.65028
[19] Mazzia, F.; Sergeyev, Y. D.; Iavernaro, F.; Amodio, P.; Mukhametzhanov, M. S., Numerical methods for solving ODEs on the Infinity Computer, (Proc. of the 2nd Intern. Conf. Numerical Computations: Theory and Algorithms, Vol. 1776 (2016), AIP Publishing: AIP Publishing New York), Article 090033 pp.
[20] Sergeyev, Y. D., Independence of the grossone-based infinity methodology from non-standard analysis and comments upon logical fallacies in some texts asserting the opposite, Found. Sci., 24, 1, 153-170 (2019) · Zbl 1428.03076
[21] Lolli, G., Metamathematical investigations on the theory of grossone, Appl. Math. Comput., 255, 3-14 (2015) · Zbl 1338.03118
[22] Margenstern, M., Using grossone to count the number of elements of infinite sets and the connection with bijections, p-Adic Numbers Ultrametr. Anal. Appl., 3, 3, 196-204 (2011) · Zbl 1259.03064
[23] Montagna, F.; Simi, G.; Sorbi, A., Taking the Pirahã seriously, Commun. Nonlinear Sci. Numer. Simul., 21, 1-3, 52-69 (2015) · Zbl 1401.03110
[24] Sergeyev, Y. D., Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems, EMS Surv. Math. Sci., 4, 2, 219-320 (2017) · Zbl 1390.03048
[25] Sergeyev, Y. D., Arithmetic of Infinity (2003), Edizioni Orizzonti Meridionali, CS, 2013 · Zbl 1076.03048
[26] Sergeyev, Y. D., Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them (2010), USA patent 7,860,914
[27] Cococcioni, M.; Pappalardo, M.; Sergeyev, Y. D., Lexicographic multi-objective linear programming using grossone methodology: Theory and algorithm, Appl. Math. Comput., 318, 298-311 (2018) · Zbl 1426.90226
[28] Cococcioni, M.; Cudazzo, A.; Pappalardo, M.; Sergeyev, Y. D., Solving the lexicographic multi-objective mixed-integer linear programming problem using branch-and-bound and grossone methodology, Commun. Nonlinear Sci. Numer. Simul., 84, Article 105177 pp. (2020) · Zbl 1451.90140
[29] De Leone, R.; Fasano, G.; Sergeyev, Y. D., Planar methods and grossone for the conjugate gradient breakdown in nonlinear programming, Comput. Optim. Appl., 71, 73-93 (2018) · Zbl 1465.90123
[30] Gaudioso, M.; Giallombardo, G.; Mukhametzhanov, M. S., Numerical infinitesimals in a variable metric method for convex nonsmooth optimization, Appl. Math. Comput., 318, 312-320 (2018) · Zbl 1426.90197
[31] Lai, L.; Fiaschi, L.; Cococcioni, M., Solving mixed pareto-lexicographic multi-objective optimization problems: The case of priority chains, Swarm Evol. Comput., 100687 (2020)
[32] Sergeyev, Y. D.; Kvasov, D. E.; Mukhametzhanov, M. S., On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales, Commun. Nonlinear Sci. Numer. Simul., 59, 319-330 (2018) · Zbl 1510.90292
[33] Leone, R. D.; Fasano, G.; Roma, M.; Sergeyev, Y. D., Iterative grossone-based computation of negative curvature directions in large-scale optimization, J. Optim. Theory Appl., 186, 2, 554-589 (2020) · Zbl 1450.90009
[34] Zhigljavsky, A., Computing sums of conditionally convergent and divergent series using the concept of grossone, Appl. Math. Comput., 218, 16, 8064-8076 (2012) · Zbl 1254.03123
[35] Amodio, P.; Brugnano, L.; Iavernaro, F.; Mazzia, F., On the use of the infinity computer architecture to set up a dynamic precision floating-point arithmetic, Soft Comput. (2020)
[36] Falcone, A.; Garro, A.; Mukhametzhanov, M. S.; Sergeyev, Y. D., Representation of grossone-based arithmetic in simulink for scientific computing, Soft Comput. (2020)
[37] Caldarola, F., The exact measures of the Sierpinski d-dimensional tetrahedron in connection with a diophantine nonlinear system, Commun. Nonlinear Sci. Numer. Simul., 63, 228-238 (2018) · Zbl 1508.52004
[38] D’Alotto, L., A classification of one-dimensional cellular automata using infinite computations, Appl. Math. Comput., 255, 15-24 (2015) · Zbl 1338.68177
[39] Sergeyev, Y. D.; Garro, A., Single-tape and multi-tape Turing machines through the lens of the Grossone methodology, J. Supercomput., 65, 2, 645-663 (2013)
[40] Fiaschi, L.; Cococcioni, M., Numerical asymptotic results in game theory using Sergeyev’s Infinity Computing, Int. J. Unconv. Comput., 14, 1, 1-25 (2018)
[41] Rizza, D., A study of mathematical determination through Bertrand’s paradox, Philos. Math., 26, 375-395 (2018) · Zbl 1423.60008
[42] Rizza, D., Numerical methods for infinite decision-making processes, Int. J. Unconv. Comput., 14, 2, 139-158 (2019)
[43] Calude, C. S.; Dumitrescu, M., Infinitesimal probabilities based on grossone, SN Comput. Sci., 1, 36 (2020)
[44] Hairer, E.; Nørsett, S. P.; Wanner, G., (Solving Ordinary Differential Equations. I. Nonstiff Problems. Solving Ordinary Differential Equations. I. Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8 (1993), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0789.65048
[45] Hairer, E.; Lubich, C.; Wanner, G., Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations (2006), Springer: Springer Berlin · Zbl 1094.65125
[46] Brugnano, L.; Iavernaro, F., (Line Integral Methods for Conservative Problems. Line Integral Methods for Conservative Problems, Monographs and Research Notes in Mathematics (2016), CRC Press: CRC Press Boca Raton, FL) · Zbl 1335.65097
[47] Shampine, L. F.; Reichelt, M. W., The MATLAB ODE suite, SIAM J. Sci. Comput., 18, 1, 1-22 (1997) · Zbl 0868.65040
[48] Amodio, P.; Brugnano, L.; Iavernaro, F.; Mazzia, F., A dynamic precision floating-point arithmetic based on the Infinity Computer framework, Lecture Notes in Comput. Sci., 11974, 289-297 (2020) · Zbl 07250760
[49] Patterson, M. A.; Weinstein, M.; Rao, A. V., An efficient overloaded method for computing derivatives of mathematical functions in MATLAB, ACM Trans. Math. Software, 39, 3, 17:1-17:36 (2013) · Zbl 1295.65027
[50] M. Weinstein, A. Rao, Algorithm 984: ADiGator, a toolbox for the algorithmic differentiation of mathematical functions in MATLAB using source transformation via operator overloading, ACM Trans. Math. Softw. 44 (2). http://dx.doi.org/10.1145/3104990. · Zbl 1484.65363
[51] Bader, B. W.; Kolda, T. G., Efficient MATLAB computations with sparse and factored tensors, SIAM J. Sci. Comput., 30, 1, 205-231 (2007) · Zbl 1159.65323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.