×

Monte Carlo optimization applied to symmetry breaking. (English) Zbl 0940.81001

Summary: The authors present a Monte Carlo optimization algorithm to search for the boundary points of the orbit space which is important in determining the symmetry breaking directions in the Higgs potential and the Landau potential. This algorithm is robust and generally applicable. For large problems they have also developed a parallel version. They apply the method to the Landau potential of the \(d\)-wave abnormal superconductor, He-3, and a SU(5) Higgs potential.

MSC:

81-08 Computational methods for problems pertaining to quantum theory
81R40 Symmetry breaking in quantum theory
82D55 Statistical mechanics of superconductors
82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)

Software:

ISOTROPY; MCMIN
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Michel, L.; Radicati, L.A.; Michel, L.; Radicati, L.A., (), Ann. phys. (NY), 66, 758, 758, (1971)
[2] Slansky, R., Phys. rep., 79, 1, (1981)
[3] Annett, J.F.; Sigrist, M.; Ueda, K., Adv. phys., Rev. mod. phys., 63, 239, (1991)
[4] Gufan, Yu.M., Sov. phys. solid state, 13, 175, (1971)
[5] Abud, M.; Sartori, G., Ann. phys. (NY), 150, 307, (1983)
[6] Kim, J.S.; Frautschi, S.; Kim, J.S., Nucl. phys. B, Nucl. phys. B, 196, 301, (1982)
[7] Jarić, M.V., Phys. rev. let., 48, 1641, (1982)
[8] Bescq, J.; Meljanac, S.; Pottinger, D., Nucl. phys. B, 292, 222, (1987)
[9] Stokes, H.T.; Hatch, D.M., Isotropy subgroups of the 230 crystallographic space groups, (1988), World Scientific Singapore · Zbl 1081.20502
[10] Tolédano, J.C.; Tolédano, P., J. phys., 41, 189, (1980)
[11] Landau, L.D.; Lifshitz, E.M., (), §83 Part I
[12] J.-I. Igusa, private communication (1984).
[13] Michel, L.; Michel, L., (), C.R. acad. sci. Paris, 322, 101, (1995), Series IIb
[14] Barton, G.; Moore, M.A., J. phys. C, 7, 4220, (1974)
[15] J.S. Kim, J.C. Tolédano, P. Tolédano, LANL cond-mat/9708084, unpublished.
[16] Jones, R.B., J. phys. C, 10, 657, (1977)
[17] Bruder, C.; Vollhardt, D., Phys. rev. B, 34, 131, (1986)
[18] Cummins, C.J.; King, R.C., J. phys. A, 19, 161, (1986)
[19] Tolédano, J.C.; Tolédano, P., Landau theory of phase transitions, (1987), World Scientific Singapore
[20] Kim, J.S., Group theoretical methods in spontaneous symmetry breaking, (), 192-225
[21] Kim, J.S.; Kim, J.S.; Hatch, D.M.; Stokes, H.T., Phys. rev. B, Phys. rev. B, 33, 1774, (1986)
[22] Hilbert, D.; Hilbert, D., Math. ann., Math. ann., 42, 313, (1893)
[23] J.S. Kim, L. Michel, B. Zhilinskii, Physical implications of crystal symmetry and time reversal. I the algebra of invariant real functions on the Brilouin zone, work in progress.
[24] Kim, J.S., J. math. phys., 25, 1694, (1984)
[25] Kim, J.S.; Kim, C.W., Nucl. phys. B, 244, 523, (1984)
[26] Allen, B., Ann. phys. (NY), 161, 152, (1985)
[27] Jarić, M.V., Phys. rev. let., 51, 2073, (1983)
[28] Abud, M.; Anastaze, G.; Eckert, P.; Ruegg, H., Phys. lett. B, 142, 371, (1984)
[29] von Neumann, J., (), 36
[30] Tsuei, C.C., Science, 271, 329, (1996)
[31] Georgi, H.; Glashow, S.L., Phys. rev. lett., 32, 438, (1974)
[32] Fox, G.C., Solving problems on concurrent processors, (1988), Prentice-Hall Englewood Cliffs, NJ
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.