×

Fuzzy granular gravitational clustering algorithm for multivariate data. (English) Zbl 1359.62278

Summary: A new method for finding fuzzy information granules from multivariate data through a gravitational inspired clustering algorithm is proposed in this paper. The proposed algorithm incorporates the theory of granular computing, which adapts the cluster size with respect to the context of the given data. Via an inspiration in Newton’s law of universal gravitation, both conditions of clustering similar data and adapting to the size of each granule are achieved. This paper compares the Fuzzy Granular Gravitational Clustering Algorithm (FGGCA) against other clustering techniques on two grounds: classification accuracy, and clustering validity indices, e.g. Rand, FM, Davies-Bouldin, Dunn, Homogeneity, and Separation. The FGGCA is tested with multiple benchmark classification datasets, such as Iris, Wine, Seeds, and Glass identification.

MSC:

62H86 Multivariate analysis and fuzziness
62H30 Classification and discrimination; cluster analysis (statistical aspects)
PDFBibTeX XMLCite
Full Text: DOI

References:

[2] Bargiela, A.; Pedrycz, W., Toward a theory of granular computing for human-centered information processing, IEEE Trans. Fuzzy Syst., 16, 320-330 (2008)
[3] Benkhaldoun, F.; Daoudi, S.; Elmahi, I.; Seaid, M., Numerical modelling of sediment transport in the Nador lagoon (Morocco), Appl. Numer. Math., 62, 1749-1766 (2012) · Zbl 1251.86001
[7] Cai, W.; Chen, S.; Zhang, D., A simultaneous learning framework for clustering and classification, Pattern Recognit., 42, 1248-1259 (2009) · Zbl 1189.68110
[8] Calinski, T.; Harabasz, J., A dendrite method for cluster analysis, Commun. Stat. - Theory Methods, 3, 1-27 (1974) · Zbl 0273.62010
[9] Charytanowicz, M.; Niewczas, J., Complete gradient clustering algorithm for features analysis of X-ray images, Adv. Intell. Soft Comp., 69, 15-24 (2010)
[10] Chen, M.-Y., A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering, Inf. Sci. (Ny), 220, 180-195 (2013)
[11] Chiu, S. L., Fuzzy model identification based on cluster estimation, J. Intell. Fuzzy Syst., 2, 267-278 (1994)
[12] Daneshgar, A.; Javadi, R.; Razavi, B. S., Clustering using isoperimetric number of trees, Pattern Recognit., 46, 3371-3382 (2012) · Zbl 1326.68242
[13] Dash, D.; Cooper, G. F., Model averaging for prediction with discrete bayesian networks, J. Mach. Learn. Res., 5, 1177-1203 (2004) · Zbl 1222.68178
[14] David, G.; Averbuch, A., SpectralCAT: categorical spectral clustering of numerical and nominal data, Pattern Recognit., 45, 416-433 (2012) · Zbl 1225.68171
[15] Davies, D. L.; Bouldin, D. W., A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-1, 224-227 (1979)
[16] Dillon, M., The use of clustering techniques in the analysis of judicial prose, Inf. Sci. (Ny), 8, 95-107 (1975)
[17] Ding, C.; Li, T., Adaptive dimension reduction using discriminant analysis and k-means clustering, (Int. Conf. Mach. Learn (2007), ACM Press: ACM Press New York, New York, USA), pp. 521-528
[18] Doğan, B.; Korürek, M., A new ECG beat clustering method based on kernelized fuzzy c-means and hybrid ant colony optimization for continuous domains, Appl. Soft Comput., 12, 3442-3451 (2012)
[19] Dunn, J. C., Well-separated clusters and optimal fuzzy partitions, J. Cybern., 4, 95-104 (1974) · Zbl 0304.68093
[20] Duwairi, R. M., Clustering semantically related classes in a heterogeneous multidatabase system, Inf. Sci. (Ny), 162, 193-210 (2004) · Zbl 1078.68621
[21] Ester, M.; Kriegel, H.; Sander, J.; Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise, Computer(Long. Beach. Calif), 1996, 226-231 (1996)
[22] Everitt, B. S., A finite mixture model for the clustering of mixed-mode data, Stat. Probab. Lett., 6, 305-309 (1988)
[23] Fazel Zarandi, M. H.; Gamasaee, R.; Turksen, I. B., A type-2 fuzzy c-regression clustering algorithm for Takagi-Sugeno system identification and its application in the steel industry, Inf. Sci. (Ny), 187, 179-203 (2012)
[24] Foroush Bastani, A.; Ahmadi, Z.; Damircheli, D., A Radial basis collocation method for pricing American options under regime-switching jump-diffusion models, Appl. Numer. Math., 65, 79-90 (2013) · Zbl 1258.91208
[25] Frank, A.; Asuncion, A., UCI machine learning repository, Univ. Calif. Irvine Sch. Inf., 2008 (2010)
[26] Frey, B. J.; Dueck, D., Clustering by passing messages between data points, Science, 315, 972-976 (2007) · Zbl 1226.94027
[27] Gao, D.; Jun, D.; Changming, Z., Integrated Fisher linear discriminants: an empirical study, Pattern Recognit., 47, 789-805 (2013) · Zbl 1326.68219
[30] Hatamlou, A., Black hole: a new heuristic optimization approach for data clustering, Inf. Sci. (Ny), 222, 175-184 (2013)
[31] Hubert, L.; Arabie, P., Comparing partitions, J. Classif., 2, 193-218 (1985)
[32] Kaufman, L.; Rousseeuw, P. J., Finding groups in data: an introduction to cluster analysis (1990), John Wiley and Sons: John Wiley and Sons New York · Zbl 1345.62009
[33] Kulkarni, A.; Muniganti, V., Fuzzy neural network models for clustering, (Proc. 1996 ACM Symp. Appl. Comput. (1996), ACM), 523-528
[34] Kundu, S., Gravitational clustering: a new approach based on the spatial distribution of the points, Pattern Recognit., 32, 1149-1160 (1999)
[35] Linda, O.; Manic, M., General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering, IEEE Trans. Fuzzy Syst., 20, 5, 883-897 (2012)
[36] Liu, H.; Zhao, F.; Jiao, L., Fuzzy spectral clustering with robust spatial information for image segmentation, Appl. Soft Comput., 12, 3636-3647 (2012)
[37] Liu, X.; Fu, H., An effective clustering algorithm with ant colony, J. Comput., 5, 598-605 (2010)
[38] Long, T.; Jin, L.-W., A new simplified gravitational clustering method for multi-prototype learning based on minimum classification error training, (Zheng, N.; Jiang, X.; Lan, X., Adv. Mach. Vision, Image Process. Pattern Anal. Int. Work. Intell. Comput. Pattern Anal. (2006), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 168-175
[39] Ludwig, S. A., Prediction of breast cancer biopsy outcomes using a distributed genetic programming approach, (Veinot, T. C.; Çatalyürek, Ü. V.; Luo, G.; Andrade, H.; Smalheiser, N. R., Proc. 1st ACM Int. Heal. Informatics Symp. (2010), ACM), 694-699
[41] Meo, R.; Bachar, D.; Ienco, D., LODE: a distance-based classifier built on ensembles of positive and negative observations, Pattern Recognit., 45, 1409-1425 (2012)
[42] Muhieddine, M.; Canot, É.; March, R., Heat transfer modeling in saturated porous media and identification of the thermophysical properties of the soil by inverse problem, Appl. Numer. Math., 62, 1026-1040 (2012) · Zbl 1426.76691
[43] Naghdy, F., Fuzzy clustering of human motor motion, Appl. Soft Comput., 11, 927-935 (2011)
[45] Nock, R.; Nielsen, F., On weighting clustering, IEEE Trans. Pattern Anal. Mach. Intell., 28, 1223-1235 (2006)
[46] Pedrycz, W., Conditional fuzzy C-means, Pattern Recognit. Lett., 17, 625-631 (1996)
[47] Pedrycz, W., Granular computing - the emerging paradigm, J. Uncertain Syst., 1, 38-61 (2007)
[48] Pedrycz, W.; Vukovich, G., Granular computing with shadowed sets, Int. J. Intell. Syst., 17, 173-197 (2002) · Zbl 0997.68061
[49] Peng, X.; Xu, D., Twin Mahalanobis distance-based support vector machines for pattern recognition, Inf. Sci. (Ny), 200, 22-37 (2012) · Zbl 1248.68416
[50] Qian, Q.; Chen, S.; Cai, W., Simultaneous clustering and classification over cluster structure representation, Pattern Recognit., 45, 2227-2236 (2012) · Zbl 1234.68354
[51] Ramos, G. N.; Hatakeyama, Y.; Dong, F.; Hirota, K., Hyperbox clustering with Ant Colony Optimization (HACO) method and its application to medical risk profile recognition, Appl. Soft Comput., 9, 632-640 (2009)
[52] Rand, W. M., Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc., 66, 846-850 (1971)
[53] Rashedi, E.; Nezamabadi-pour, H., A stochastic gravitational approach to feature based color image segmentation, Eng. Appl. Artif. Intell., 26, 1322-1332 (2013)
[54] Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S., GSA: a gravitational search algorithm, Inf. Sci. (Ny), 179, 2232-2248 (2009) · Zbl 1177.90378
[55] Sai, Y. S.Y.; Nie, P. N.P.; Chu, D. C.D., A model of granular computing based on rough set theory, Stud. Fuzziness Soft Comput., 294, 239-263 (2013)
[57] Shamir, R.; Sharan, R., Algorithmic approaches to clustering gene expression data, Curr. Top. Comput. Biol., 269-300 (2001)
[58] Sharma, S., Applied Multivariate Techniques (1995), John Wiley & Sons, Inc.
[59] Sørensen, T., A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons, Biol. Skr., 5, 1-34 (1948)
[60] Taşdemir, K., Vector quantization based approximate spectral clustering of large datasets, Pattern Recognit., 45, 3034-3044 (2012)
[61] Thi, L.; An, H.; Hoai, L.; Dinh, P., New and efficient DCA based algorithms for minimum sum-of-squares clustering, Pattern Recognit., 47, 388-401 (2014) · Zbl 1326.68225
[62] Thomassey, S.; Happiette, M., A neural clustering and classification system for sales forecasting of new apparel items, Appl. Soft Comput., 7, 1177-1187 (2007)
[63] Vu, V.-V.; Labroche, N.; Bouchon-Meunier, B., Improving constrained clustering with active query selection, Pattern Recognit., 45, 1749-1758 (2012)
[64] Wang, Z.; Shao, Y.-H.; Wu, T.-R., A GA-based model selection for smooth twin parametric-margin support vector machine, Pattern Recognit., 46, 2267-2277 (2013) · Zbl 1316.68131
[65] Wong, A. K.C.; Chiu, D. K.Y.; Huang, W., A discrete-valued clustering algorithm with applications to biomolecular data, Inf. Sci. (Ny), 139, 97-112 (2001) · Zbl 0984.92014
[66] Wright, W. E., Gravitational clustering, Pattern Recognit., 9, 151-166 (1977)
[67] Yeung, K. Y.; Haynor, D. R.; Ruzzo, W. L., Validating clustering for gene expression data, Bioinformatics., 17, 309-318 (2001)
[68] Yu, Z.; Wong, H.-S.; You, J.; Yu, G.; Han, G., Hybrid cluster ensemble framework based on the random combination of data transformation operators, Pattern Recognit., 45, 1826-1837 (2012) · Zbl 1233.68198
[69] Yung, H. C., Segmentation of color images based on the gravitational clustering concept, Opt. Eng., 37, 989-1000 (1998)
[70] Zadeh, L. A., Fuzzy sets, Inf. Control., 8, 338-353 (1965) · Zbl 0139.24606
[71] Zhang, L. Z.L.; Zhang, B. Z.B., Quotient space based multi-granular computing, Stud. Comput. Intelligence, 547 (2014)
[73] Zhang, Y. Z.Y.; Street, W. N., Bagging with adaptive costs, IEEE Trans. Knowl. Data Eng., 20 (2008)
[74] Zhang, Y. Z.Y.; Zhu, X. Z.X.; Huang, Z. H.Z., Fuzzy sets based granular logics for granular computing, Stud. Comput. Intelligence, 547 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.