×

Multidimensional item response theory models with collateral information as Poisson regression models. (English) Zbl 1360.62518

Summary: Multiple choice items on tests and Likert items on surveys are ubiquitous in educational, social and behavioral science research; however, methods for analyzing of such data can be problematic. Multidimensional item response theory models are proposed that yield structured Poisson regression models for the joint distribution of responses to items. The methodology presented here extends the approach described in [C. J. Anderson, J. V. Verkuilen and B. L. Peyton, “Modeling polytomous item responses using simultaneously estimated multinomial logistic regression models”, J. Educ. Behav. Stat. 35, No. 4, 422–452 (2010), http://www.jstor.org/stable/40864755] that used fully conditionally specified multinomial logistic regression models as item response functions. In this paper, covariates are added as predictors of the latent variables along with covariates as predictors of location parameters. Furthermore, the models presented here incorporate ordinal information of the response options thus allowing an empirical examination of assumptions regarding the ordering and the estimation of optimal scoring of the response options. To illustrate the methodology and flexibility of the models, data from a study on aggression in middle school [D. L. Espelage, M. K. Holt and R. R. Henkel, “Examination of peer-group contextual effects on aggression during early adolescence”, Child Dev. 74, No. 1, 205–220 (2003; doi:10.1111/1467-8624.00531)] is analyzed. The models are fit to data using SAS.

MSC:

62P15 Applications of statistics to psychology
62H17 Contingency tables
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] AGRESTI, A., CHUANG, C., and KEZOUTH, A. (1987), “Order-Restricted Score Parameters in Association Models for Contingency Tables”, Journal of the American Statistical Assocation, 82, 619-623. · Zbl 0625.62041 · doi:10.1080/01621459.1987.10478474
[2] AGRESTI, A. (2002), Categorical Data Analysis (2nd ed.), New York: Wiley. · Zbl 1018.62002 · doi:10.1002/0471249688
[3] ANDERSEN, EB; Fischer, GH (ed.); Molenaar, IW (ed.), The derivation of polytomous Rasch models, 271-291 (1995), New York · Zbl 0844.62091
[4] ANDERSON, CJ; Millsap, RE (ed.); Maydeu-Olivares, A. (ed.), Categorical Data Analysis with a Psychometric Twist, 311-336 (2009), Thousand Oaks, CA · doi:10.4135/9780857020994.n14
[5] ANDERSON, C.J., LI, Z., and VERMUNT, J.K. (2007), “Estimation of Models in a Rasch Family for Polytomous Items and Multiple Latent Variables”, Journal of Statistical Software, 20, published online at http://www.jstatsoft.org/v20/i06/paper.
[6] ANDERSON, C.J., VERKUILEN, J.V., and PEYTON, B.L. (2010), “Modeling Polytomous Item Responses Using Simultaneously Estimated Multinomial Logistic Regression Models”, Journal of Educational and Behavioral Statistics, 35, 422-452. · doi:10.3102/1076998609353117
[7] ANDERSON, C.J., and VERMUNT, J.K. (2000), “Log-Multiplicative Association Models as Latent Variable Models for Nominal and/or Ordinal Data”, Sociological Methodology, 30, 81-121. · doi:10.1111/0081-1750.00076
[8] ANDERSON, C.J., and YU, H.T. (2007), “Log-Multiplicative Association Models as Item Response Models”, Psychometrika, 72, 5-23. · Zbl 1286.62098 · doi:10.1007/s11336-005-1419-2
[9] ANRAKU, K. (1999), “An Information Criterion for Parameters Under a Simple Order Restriction”, Biometrika, 86, 141-152. · Zbl 0917.62026 · doi:10.1093/biomet/86.1.141
[10] BARTHOLOMEW, D.J., STEELE, F., MOUSTAKI, I., GALRAITH, J.I. (2008), Analysis of Multivariate Social Science Data, Boca Raton, FL: CRC Press. · Zbl 1162.62096
[11] BARTOLUCCI, F., and FORCINA, A. (2002), “Extended RC Association Models Allowing for Order Restrictions and Modelling”, Journal of the American Statistical Association, 97, 1192-1199. · Zbl 1041.62049 · doi:10.1198/016214502388618988
[12] BECKER, M.P. (1989), “Models for the Analysis of Association in Multivariate Contingency Tables”, Journal of the American Statistical Association, 84, 1014-1019. · doi:10.1080/01621459.1989.10478866
[13] BISHOP, Y.M.M., FIENBERG, S.E., and HOLLAND, P.W. (1975), Discrete Multivariate Analysis, Cambridge, MA: MIT Press. · Zbl 0332.62039
[14] BOCK, D.R., GIBBONS, SCHILLING, S.G., MURAKI, E., WILSON, D.T., and WOOD, R. (2003), TESTFACT 4.0 Computer Software and Manual, Lincolnwood, IL: Scientific Software International.
[15] DE LA TORRE, J. (2009), “Improving the Quality of Ability Estimates Through Multidimensional Scoring and Incorporation of Ancillary Variables”, Applied Psychological Measurement, DOI:10.1177/0146621608329890, published online at http://apm.sagepub.com/content/33/6/465.short.
[16] DE BOECK, P, and WILSON, M. (2004), Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach, New York: Springer. · Zbl 1098.91002 · doi:10.1007/978-1-4757-3990-9
[17] ESPELAGE, D.L., and HOLT, M.K. (2001), “Bullying and Victimization During Early Adolescence”, Journal of Emotional Abuse, 2, 123-142. · doi:10.1300/J135v02n02_08
[18] ESPELAGE, D.L., HOLT, M.K., and HENKEL, R.R. (2004), “Examination of Peer-Group Contextual Effects on Aggression During Early Adolescence”, Child Development, 74, 205-220. · doi:10.1111/1467-8624.00531
[19] FAHRMEIR, L., and TUTZ, G. (2001), Multivariate Statistical Modelling Based on Generalized Linear Models, New York: Springer. · Zbl 0980.62052 · doi:10.1007/978-1-4757-3454-6
[20] FISHER, GH; Linden, WJ (ed.); Hambletion, RK (ed.), Unidimensional Linear Logistic Rasch Models, 225-243 (1997), New York · doi:10.1007/978-1-4757-2691-6_13
[21] GALINDO-GARRE, F., and VERMUNT, J.K. (2004), “The Order-Restricted Association Model: Two Estimation Algorithms and Issues in Testing”, Psychometrika, 69, 641-654. · Zbl 1306.62414 · doi:10.1007/BF02289860
[22] GALINDO-GARRE, F., and VERMUNT, J.K. (2005), “Testing Log-Linear Models with Ordinal Constraints: A Comparison of Asymptotic, Bootstrap, and Posterior Predictive p-Values”, Statistica Neerlandica, 59, 82-94. · Zbl 1069.62016 · doi:10.1111/j.1467-9574.2005.00281.x
[23] GLAS, C.A.E. (2005), “Review of de Bock, P. and Wilson, M. <Emphasis Type=”Italic“>Explanatory Item Response Theory Models: A Generalized Linear and Nonlinear Approach”, Journal of Educational Measurement, 42, 303-307. · doi:10.1111/j.1745-3984.2005.00016.x
[24] GOODMAN, L.A. (1979), “Simple Models for the Analysis of Association in Cross-Classifications Having Ordered Categories”, Journal of the American Statistical Association, 74, 537-552. · doi:10.1080/01621459.1979.10481650
[25] GOODMAN, L.A. (1985), “The Analysis of Cross-Classified Data Having Ordered and/or Unordered Categories: Association Models, Correlation Models, and Asymmetry Models for Contingency Tables With or Without Missing Entries”, The Annals of Statistics, 13, 10-69. · Zbl 0613.62070 · doi:10.1214/aos/1176346576
[26] HABERMAN, S.J. (1995), “Computation of Maximum Likelihood Estimates in Association Models”, Journal of the American Statistical Association 90, 1438-1446. · Zbl 0867.62050 · doi:10.1080/01621459.1995.10476650
[27] HEINEN, T. (1993), Discrete Latent Variable Models, The Netherlands: Tilburg University Press.
[28] HEINEN, T. (1996), Latent Class and Discrete Latent Trait Models: Similarities and Differences, Thousand Oaks: Sage Publications, Inc.
[29] HOLLAND, P.H. (1990), “The Dutch Identity: A New Tool for the Study of Item Response Models”, Psychometrika, 55, 5-18. · Zbl 0725.62097 · doi:10.1007/BF02294739
[30] ILIOPOULOS, G., KATERI, M., and NTZOUFRAS, I. (2007), “Bayesian Estimation of Unrestricted and Order-Restricted Association Models for Two-Way Contingency Tables”, Computational Statistics and Data Analysis, 51, 4643-4655. · Zbl 1162.62324 · doi:10.1016/j.csda.2006.08.013
[31] ILIOPOULOS, G., and KATERI, M., and NTZOUFRAS, I. (2009), “Bayesian Comparison for the Order Restricted RC Association Model”, Psychometrika, 74, 561-587. · Zbl 1179.62039 · doi:10.1007/s11336-009-9117-0
[32] JOE, H., and LIU, Y. (1996), “A Model for Multivariate Binary Response with Covariates Based on Conditionally Specified Logistic Regressions”, Statistics and Probability Letters, 31, 113-120. · Zbl 0880.62075 · doi:10.1016/S0167-7152(96)00021-1
[33] JUNKER, B.W. (1993), “Conditional Association, Essential Independence and Monotone Unidimensional Item Response Models”, Annals of Statistics, 21, 1359-1378. · Zbl 0791.62099 · doi:10.1214/aos/1176349262
[34] JUNKER, B.W., and SIJTSMA, K. (2000), “Latent and Manifest Monotonicity in Item Response Models”, Applied Psychological Measurement, 24, 65-81. · doi:10.1177/01466216000241004
[35] LI, Z. (2010), Loglinear Models as Item Response Models, unpublished doctoral dissertation, University of Illinois at Urbana-Champaign. · Zbl 1286.62098
[36] LINTING, M., MEULMEAN, J.J., GROENEN, P.J.F., and VAN DER KOOIJ, A.J. (2007), “Nonlinear Principle Components Analysis: Introduction and Applications”, Psychological Methods, 12, 336-358. · doi:10.1037/1082-989X.12.3.336
[37] MCDONALD, RP; Linden, WJ (ed.); Hambleton, RK (ed.), Normal-ogive multidimensional model (1997), New York
[38] RECKASE, M.D. (2009), Multidimensional Item Response Theory, New York: Springer. · Zbl 1291.62023 · doi:10.1007/978-0-387-89976-3
[39] RIJMEN, F., TUERLINCKX, F., DE BOECK, F., and KUPPENS, P. (2003), “A Nonlinear Mixed Model Framework for Item Response Theory”, Psychological Methods, 8, 185-205. · doi:10.1037/1082-989X.8.2.185
[40] RITOV, Y., and GILULA, Z. (1991), “The Order-Restricted RC Model for Ordered Contingency Tables: Estimation and Testing for Fit”, Annals of Statistics, 19, 2090-2101. · Zbl 0745.62058 · doi:10.1214/aos/1176348387
[41] RUTKOWSKI, L., VASTERLING, J.V., PROCTER, S.P., and ANDERSON, C.J. (2010), “Posttraumatic Stress Disorder and Standardized Test-Taking Ability”, Journal of Educational Psychology, 102, 223-233. · doi:10.1037/a0017287
[42] SHIEU, C.F., CHEN, C.T., SU, Y.H., and WANG, W.C. (2005), “Using SAS PROC NLMIXED to Fit Item Response Theory Models”, Behavior Research Methods, 37, 202-218. · doi:10.3758/BF03192688
[43] TETTEGAH, S., and ANDERSON, C.J. (2007), “Pre-service Teachers’ Empathy and Cognitions: Statistical Analysis of Text Data by Graphical Models”, Contemporary Educational Psychology, 32, 48-82, published online at http://dx.doi.org/10.1016/j.cedpsych.2006.10.010. · doi:10.1016/j.cedpsych.2006.10.010
[44] THOMAS, N. (2002), “The Role of Secondary Covariates When Estimating Latent Trait Population Distributions”, Psychometrika, 67, 33-48. · Zbl 1297.62242 · doi:10.1007/BF02294708
[45] VERMUNT, J.K. (1997), ℓEM: A General Program for the Analysis of Categorical Data (Computer Software Manual), Tilburg, The Netherlands. Published online at http://members.home.nl/jeroenvermunt/.
[46] VERMUNT, J.K. (1999), “A General Class of Nonparametric Models for Ordinal Categorical Data”, Sociological Methodology, 29, 187-223. · doi:10.1111/0081-1750.00064
[47] WANG, W.C., CHEN, P.H., and CHEN, Y.Y. (2004), “Improving Measurement Precision of Test Batteries Using Multidimensional Item Response Models”, Psychological Methods, 9, 116-136. · doi:10.1037/1082-989X.9.1.116
[48] WONG, R.S. (1995), “Extensions in the Use of Log-Multiplicative Scaled Association Models in Multiway Contingency Tables”, Sociological Methods and Research, 23, 507-538. · doi:10.1177/0049124195023004005
[49] WONG, R.S. (2001), “Multidimensional Association Models: A Multilinear Approach”, Sociological Methods and Research, 30, 197-240 · doi:10.1177/0049124101030002003
[50] YEE, T.W., and HASTIE, T. J. (2003), “Reduced-Rank Vector Generalized Linear Models”, Statistical Modelling, 3, 1541. · Zbl 1195.62123 · doi:10.1191/1471082X03st045oa
[51] YEE, T.W. (2010), “The VGAM Package for Categorical Data Analysis”, Journal of Statistical Software, 32, 1-34, published online at http://www.jstatsoft.org/v32/i10/.
[52] ZWINDERMAN, A.H. (1991), “A Generalized Rasch Model for Manifest Predictions”, Psychometrika, 56, 589-600. · Zbl 0850.62857 · doi:10.1007/BF02294492
[53] ZWINDERMAN, AH; Linden, WJ (ed.); Hambletion, RK (ed.), Response Models with Mainfest Predicto, 245-256 (1997), New York · doi:10.1007/978-1-4757-2691-6_14
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.