×

Time delay embedding increases estimation precision of models of intraindividual variability. (English) Zbl 1272.62141

Summary: This paper investigates the precision of parameters estimated from local samples of time dependent functions. We find that time delay embedding, i.e., structuring data prior to analysis by constructing a data matrix of overlapping samples, increases the precision of parameter estimates and in turn statistical power compared to standard independent rows of panel data. We show that the reason for this effect is that the sign of estimation bias depends on the position of a misplaced data point if there is no a priori knowledge about initial conditions of the time dependent function. Hence, we reason that the advantage of time delayed embedding is likely to hold true for a wide variety of functions. We support these conclusions both by mathematical analysis and two simulations.

MSC:

62P15 Applications of statistics to psychology

Software:

S-PLUS; Mx; MEMSS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abarbanel, H.D.I. (1996). Analysis of observed chaotic data. New York: Springer. · Zbl 0890.93006
[2] Baltes, P.B., Reese, H.W., & Nesselroade, J.R. (1977). Life–span developmental psychology: introduction to research methods. Pacific Grove: Brooks/Cole.
[3] Bisconti, T.L., Bergeman, C.S., & Boker, S.M. (2006). Social support as a predictor of variability: an examination of the adjustment trajectories of recent widows. Psychology and Aging, 21(3), 590–599. · doi:10.1037/0882-7974.21.3.590
[4] Boker, S.M., Neale, M.C., & Rausch, J. (2004). Latent differential equation modeling with multivariate multi-occasion indicators. In K. van Montfort, H. Oud, & A. Satorra (Eds.), Recent developments on structural equation models: theory and applications (pp. 151–174). Dordrecht: Kluwer Academic. · Zbl 05196652
[5] Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley. · Zbl 0731.62159
[6] Butner, J., Amazeen, P.G., & Mulvey, G.M. (2005). Multilevel modeling to two cyclical processes: extending differential structural equation modeling to nonlinear coupled systems. Psychological Methods, 10(2), 159–177. · doi:10.1037/1082-989X.10.2.159
[7] Chow, S.M., Ram, N., Boker, S.M., Fujita, F., & Clore, G. (2005). Capturing weekly fluctuation in emotion using a latent differential structural approach. Emotion, 5(2), 208–225. · doi:10.1037/1528-3542.5.2.208
[8] Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Erlbaum. · Zbl 0747.62110
[9] Deboeck, P.R., Boker, S.M., & Bergeman, C.S. (2009). Modeling individual damped linear oscillator processes with differential equations: using surrogate data analysis to estimate the smoothing parameter. Multivariate Behavioral Research, 43(4), 497–523. · doi:10.1080/00273170802490616
[10] Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors. Physica D, 9, 189–208. · Zbl 0593.58024 · doi:10.1016/0167-2789(83)90298-1
[11] Hotelling, H. (1927). Differential equations subject to error, and population estimates. Journal of the American Statistical Association, 22(159), 283–314. · JFM 53.0523.18 · doi:10.2307/2276800
[12] Hox, J.J. (2002). Multilevel analysis: techniques and applications. Hillsdale: Erlbaum. · Zbl 1226.62001
[13] Kantz, H., & Schreiber, T. (1997). Nonlinear time series analysis. Cambridge: Cambridge University Press. · Zbl 0873.62085
[14] McArdle, J.J., & McDonald, R.P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 87, 234–251. · Zbl 0556.62099
[15] Molenaar, P.C.M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181–202. · Zbl 0603.62099 · doi:10.1007/BF02294246
[16] Neale, M.C., Boker, S.M., Xie, G., & Maes, H.H. (2003). Mx: statistical modeling (6th edn.). Richmond: VCU, Department of Psychiatry.
[17] Nesselroade, J.R. (1991). The warp and woof of the developmental fabric. In R. Downs, L. Liben, & D.S. Palermo (Eds.), Visions of aesthetics, the environment, and development: the legacy of Joachim F. Wohlwill (pp. 213–240). Hillsdale: Erlbaum.
[18] Nesselroade, J.R., & Ram, N. (2004). Studying intraindividual variability: what we have learned that will help us understand lives in context. Research in Human Development, 1(1–2), 9–29. · doi:10.1207/s15427617rhd0101&2_3
[19] Nesselroade, J.R., McArdle, J.J., Aggen, S.H., & Meyers, J.M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. Moskowitz, & S. Hershberger (Eds.), Modeling intraindividual variability with repeated measures data: methods and applications (pp. 235–265). Hillsdale: Lawrence Erlbaum Associates.
[20] Oud, J.H.L., & Jansen, R.A.R.G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrica, 65(2), 199–215. · Zbl 1291.62240 · doi:10.1007/BF02294374
[21] Pinheiro, J.C., & Bates, D.M. (2000). Mixed-effects models in S and S-plus. New York: Springer. · Zbl 0953.62065
[22] Ramsay, J.O., Hooker, G., Campbell, D., & Cao, J. (2007). Parameter estimation for differential equations: a generalized smoothing approach. Journal of the Royal Statistical Society B, 69(5), 774–796. · doi:10.1111/j.1467-9868.2007.00610.x
[23] Sauer, T., Yorke, J., & Casdagli, M. (1991). Embedology. Journal of Statistical Physics, 65(3–4), 95–116. · Zbl 0943.37506 · doi:10.1007/BF01053745
[24] Shannon, C.E., & Weaver, W. (1949). The mathematical theory of communication. Champaign: University of Illinois Press. · Zbl 0041.25804
[25] Snijders, T.A.B., & Bosker, R.J. (1999). Multilevel analysis: an introduction to basic and advanced multilevel modeling. Newbury Park: Sage. · Zbl 0953.62127
[26] Takens, F. (1985). Detecting strange attractors in turbulence. In A. Dold & B. Eckman (Eds.), Lecture notes in mathematics : Vol. 1125. Dynamical systems and bifurcations (pp. 99–106). Berlin: Springer.
[27] Whitney, H. (1936). Differentiable manifolds. Annals of Mathematics, 37, 645–680. · JFM 62.1454.01 · doi:10.2307/1968482
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.