×

A nonparametric multidimensional latent class IRT model in a Bayesian framework. (English) Zbl 1402.62298

Summary: We propose a nonparametric item response theory model for dichotomously-scored items in a Bayesian framework. The model is based on a latent class (LC) formulation, and it is multidimensional, with dimensions corresponding to a partition of the items in homogenous groups that are specified on the basis of inequality constraints among the conditional success probabilities given the latent class. Moreover, an innovative system of prior distributions is proposed following the encompassing approach, in which the largest model is the unconstrained LC model. A reversible-jump type algorithm is described for sampling from the joint posterior distribution of the model parameters of the encompassing model. By suitably post-processing its output, we then make inference on the number of dimensions (i.e., number of groups of items measuring the same latent trait) and we cluster items according to the dimensions when unidimensionality is violated. The approach is illustrated by two examples on simulated data and two applications based on educational and quality-of-life data.

MSC:

62P15 Applications of statistics to psychology
62F15 Bayesian inference
62G05 Nonparametric estimation
62H30 Classification and discrimination; cluster analysis (statistical aspects)

Software:

R; MultiLCIRT; mirt
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Akaike, H.; Petrov, BN (ed.); Csaki, F. (ed.), Information theory and an extension of the maximum likelihood principle, 267-281 (1973), Budapest · Zbl 0283.62006
[2] Bacci, S., & Bartolucci, F. (2016). Two-tier latent class IRT models in R. The R Journal, 8, 139-166.
[3] Bacci, S., Bartolucci, F., & Gnaldi, M. (2014). A class of multidimensional latent class IRT models for ordinal polytomous item responses. Communication in Statistics - Theory and Methods, 43, 787-800. · Zbl 1462.62400 · doi:10.1080/03610926.2013.827718
[4] Bartolucci, F. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72, 141-157. · Zbl 1286.62099 · doi:10.1007/s11336-005-1376-9
[5] Bartolucci, F., Bacci, S., & Gnaldi, M. (2015). Statistical analysis of questionnaires: A unified approach based on Stata and R. Boca Raton, FL: Chapman and Hall/CRC Press. · Zbl 1329.62001
[6] Bartolucci, F., Bacci, S., & Gnaldi, M. (2016). MultiLCIRT: multidimensional latent class item response theory models. In R package version, version 2.10. https://cran.r-project.org/web/packages/MultiLCIRT/index.html. · Zbl 1462.62400
[7] Bartolucci, F., & Forcina, A. (2005). Likelihood inference on the underlying structure of IRT models. Psychometrika, 70, 31-43. · Zbl 1306.62378 · doi:10.1007/s11336-001-0934-z
[8] Bartolucci, F., Scaccia, L., & Farcomeni, A. (2012). Bayesian inference through encompassing priors and importance sampling for a class of marginal models for categorical data. Computational Statistics and Data Analysis, 56, 4067-4080. · Zbl 1255.62057 · doi:10.1016/j.csda.2012.04.006
[9] Béguin, A. A., & Glas, C. A. W. (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66, 541-561. · Zbl 1293.62234 · doi:10.1007/BF02296195
[10] Birnbaum, A.; Lord, FM (ed.); Novick, MR (ed.), Some latent trait models and their use in inferring an examinee’s ability, 395-479 (1968), Reading, MA
[11] Bock, R., Gibbons, R. D., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12, 261-280. · doi:10.1177/014662168801200305
[12] Bolt, D. M., & Lall, V. F. (2003). Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo. Applied Psychological Measurement, 27, 395-414. · doi:10.1177/0146621603258350
[13] Chalmers, P., Pritikin, J., Robitzsch, A., Zoltak, M., Kim, K., Falk, C. F., & Meade, A. (2017). MIRT: Multidimensional item response theory. In R package version, version 1.23. https://cran.r-project.org/web/packages/mirt/index.html. · Zbl 0669.62085
[14] Christensen, K. B., Bjorner, J. B., Kreiner, S., & Petersen, J. H. (2002). Testing unidimensionality in polytomous Rasch models. Psychometrika, 67, 563-574. · Zbl 1297.62228 · doi:10.1007/BF02295131
[15] Costantini, M., Musso, M., Viterbori, P., Bonci, F., Del Mastro, L., Garrone, O., et al. (1999). Detecting psychological distress in cancer patients: Validity of the Italian version of the hospital anxiety and depression scale. Support Care Cancer, 7, 121-127. · doi:10.1007/s005200050241
[16] Diebolt, J., & Robert, C. (1994). Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society, Series B, 56, 363-375. · Zbl 0796.62028
[17] Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215-231. · Zbl 0281.62057 · doi:10.1093/biomet/61.2.215
[18] Graham, R. L., Knuth, D. E., & Patashnik, O. (1988). Concrete mathematics: A foundation for computer science. Reading, MA: Addison-Wesley.
[19] Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732. · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[20] Green, P. J., & Richardson, S. (2001). Hidden Markov models and disease mapping. Journal of the American Statistical Association, 97, 1055-1070. · Zbl 1046.62117 · doi:10.1198/016214502388618870
[21] Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications. Boston: Kluwer Nijhoff. · doi:10.1007/978-94-017-1988-9
[22] Hojtink, H., & Molenaar, I. W. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks. Psychometrika, 62, 171-189. · Zbl 1003.62548 · doi:10.1007/BF02295273
[23] Hurvich, C. M., & Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297-307. · Zbl 0669.62085 · doi:10.1093/biomet/76.2.297
[24] Junker, B. W., & Sijtsma, K. (2001). Nonparametric item response theory in action: An overview of the special issue. Applied Psychological Measurement, 25, 211-220. · doi:10.1177/01466210122032028
[25] Karabatsos, G. (2001). The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. Journal of Applied Measurement, 2, 389-423.
[26] Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795. · Zbl 0846.62028 · doi:10.1080/01621459.1995.10476572
[27] Klugkist, I., Kato, B., & Hoijtink, H. (2005). Bayesian model selection using encompassing priors. Statistica Nederlandica, 59, 57-69. · Zbl 1069.62026 · doi:10.1111/j.1467-9574.2005.00279.x
[28] Kuo, T., & Sheng, Y. (2015). Bayesian estimation of a multi-unidimensional graded response IRT model. Behaviormetrika, 42, 79-94. · doi:10.2333/bhmk.42.79
[29] Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. Boston: Houghton Mifflin. · Zbl 0182.52201
[30] Lindley, D. V. (1957). A statistical paradox. Biometrika, 44, 187-192. · Zbl 0080.12801 · doi:10.1093/biomet/44.1-2.187
[31] Lindsay, B., Clogg, C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96-107. · Zbl 0735.62107 · doi:10.1080/01621459.1991.10475008
[32] Martin-Löf, P. (1973). Statistiska modeller. Stockholm: Institütet för Försäkringsmatemetik och Matematisk Statistisk vid Stockholms Universitet.
[33] Pan, J. C., & Huang, G. H. (2014). Bayesian inferences of latent class models with an unknown number of classes. Psychometrika, 79, 621-646. · Zbl 1303.62108 · doi:10.1007/s11336-013-9368-7
[34] Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability, 4, 321-333. · Zbl 0107.36805
[35] Reckase, M. D. (2009). Multidimensional item-response theory. New York: Springer. · Zbl 1291.62023 · doi:10.1007/978-0-387-89976-3
[36] Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464. · Zbl 0379.62005 · doi:10.1214/aos/1176344136
[37] Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics, 22, 1701-1762. · Zbl 0829.62080 · doi:10.1214/aos/1176325750
[38] Tuyl, F., Gerlach, R., & Mengersen, K. (2009). Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters. Bayesian Analysis, 4, 151-158. · Zbl 1330.62156 · doi:10.1214/09-BA405
[39] Van Onna, M. J. H. (2002). Bayesian estimation and model selection in ordered latent class models for polytomous items. Psychometrika, 67, 519-538. · Zbl 1297.62247 · doi:10.1007/BF02295129
[40] Verhelst, N. D. (2001). Testing the unidimensionality assumption of the Rasch model. Methods of Psychological Research Online, 6, 231-271.
[41] Vermunt, J. K. (2001). The use of restricted latent class models for defining and testing nonparametric and parametric item response theory models. Applied Psychological Measurement, 25, 283-294. · doi:10.1177/01466210122032082
[42] von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61, 287-307. · doi:10.1348/000711007X193957
[43] Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrika Scandinavica, 67, 361-370. · doi:10.1111/j.1600-0447.1983.tb09716.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.