×

Approximate maximum likelihood estimation of the autologistic model. (English) Zbl 1507.62010

Summary: Approximate Maximum Likelihood Estimation (AMLE) is a simple and general method recently proposed for approximating MLEs without evaluating the likelihood function. The only requirement is the ability to simulate the model to be estimated. Thus, the method is quite appealing for spatial models because it does not require evaluation of the normalizing constant, which is often computationally intractable. An AMLE-based algorithm for parameter estimation of the autologistic model is proposed. The impact of the numerical choice of the input parameters of the algorithm is studied by means of extensive simulation experiments, and the outcomes are compared to existing approaches. AMLE is much more precise, in terms of Mean-Square-Error, with respect to Maximum pseudo-likelihood, and comparable to ML-type methods. Although the computing time is non-negligible, the implementation is straightforward and the convergence conditions are weak in most practically relevant cases.

MSC:

62-08 Computational methods for problems pertaining to statistics
62M40 Random fields; image analysis
62F12 Asymptotic properties of parametric estimators
62M30 Inference from spatial processes

Software:

R; ks; DALL; ssfit; agridat; bootlib
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Andrews, D. F.; Herzberg, A. M., Data, (1985), Springer · Zbl 0567.62002
[2] Arbia, G., (Spatial Econometrics: Statistical Foundations and Applications to Regional Convergence, Advances in Spatial Science, (2006), Springer) · Zbl 1128.62123
[3] Arbia, G.; Bee, M.; Espa, G., Aggregation of regional economic time series with different spatial correlation structures, Geogr. Anal., 43, 78-103, (2011)
[4] Arbia, G.; Bee, M.; Espa, G., Testing isotropy in spatial econometric models, Spat. Econ. Anal., 8, 228-240, (2013)
[5] Beaumont, M. A.; Zhang, W.; Balding, D. J., Approximate Bayesian computation in population genetics, Genetics, 162, 2025-2035, (2002)
[6] Besag, J. E., Statistical analysis of non-lattice data, Statistician, 24, 179-195, (1975)
[7] Casella, G.; Robert, C., Monte Carlo statistical methods, (2004), Springer · Zbl 1096.62003
[8] Cipra, B., An introduction to the Ising model, Amer. Math. Monthly, 94, 937-959, (1987)
[9] Comets, F., On consistency of a class of estimators for exponential families of Markov random fields on the lattice, Ann. Statist., 20, 455-468, (1992) · Zbl 0787.62100
[10] Corrado, L.; Fingleton, B., Where is the economics in spatial econometrics?, J. Reg. Sci., 52, 210-239, (2012)
[11] Cox, D.; Kartsonaki, C., The Fitting of complex parametric models, Biometrika, 99, 741-747, (2012) · Zbl 1437.62432
[12] Davison, A. C.; Hinkley, D. V., Bootstrap methods and their application, (1997), Cambridge University Press · Zbl 0886.62001
[13] Duong, T., 2014. Kde: Kernel smoothing. R package version 1.9.2. URL: http://CRAN.R-project.org/package=kde.
[14] Feizjavadian, S.; Hashemi, R., Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall-Olkin bivariate Weibull distribution, Comput. Statist. Data Anal., 82, 19-34, (2015)
[15] Friel, N.; Pettitt, A. N., Likelihood estimation and inference for the autologistic model, J. Comput. Graph. Statist., 13, 232-246, (2004)
[16] Geman, S.; Graffigne, G., Markov random field image models and their applications to computer vision, (Gleason, A. M., Proceedings of the International Congress of Mathematics, (1987), American Mathematical Society) · Zbl 0665.68067
[17] Geyer, C. J.; Thompson, E. A., Constrained Monte Carlo maximum likelihood for dependent data (with discussion), J. R. Stat. Soc. Ser. B, 54, 657-699, (1992)
[18] Grelaud, A.; Robert, C. P.; Marin, J.-M.; Rodolphe, F.; Taly, J.-F., ABC likelihood-free methods for model choice in Gibbs random fields, Bayesian Anal., 4, 317-336, (2009) · Zbl 1330.62126
[19] Griffith, D. A.; Arbia, G., Detecting negative spatial autocorrelation in georeferenced random variables, Int. J. Geogr. Inf. Sci., 24, 417-437, (2010)
[20] Gu, M.-G.; Zhu, H.-T., Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation, J. R. Stat. Soc. Ser. B, 63, 339-355, (2001) · Zbl 0979.62060
[21] Guyon, X.; Künsch, H. R., Asymptotic comparison of estimators in the Ising model, (Stochastic Models, Statistical Methods, and Algorithms in Image Analysis, Lecture Notes in Statistics, vol. 74, (1992), Springer), 177-198 · Zbl 0801.62086
[22] Huang, F.; Ogata, Y., Generalized pseudo-likelihood estimates for Markov random fields on lattice, Ann. Inst. Statist. Math., 54, 1-18, (2002) · Zbl 1095.62514
[23] Huffer, F.; Wu, H., Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species, Biometrics, 54, 509-524, (1998) · Zbl 1058.62677
[24] Hughes, J.; Haran, M.; Caragea, P. C., Autologistic models for binary data on a lattice, Environmetrics, 22, 857-871, (2011)
[25] Ionides, E. L., Maximum smoothed likelihood estimation, Statist. Sinica, 15, 1003-1014, (2005) · Zbl 1086.62032
[26] Ishiguro, M.; Akaike, H., DALL: davidon’s algorithm for log-likelihood maximization—A FORTRAN subroutine for statistical model builders, (Computer Science Monographs, vol. 25, (1989), The Instittute of Statistical Mathematics Tokyo)
[27] Kaiser, M. S.; Caragea, P. C., Exploring dependence with data on spatial lattices, Biometrics, 65, 857-865, (2009) · Zbl 1172.62031
[28] Marjoram, P.; Molitor, J.; Plagnol, V.; Tavarè, S., Markov chain Monte Carlo without likelihoods, Proc. Natl. Acad. Sci. (USA), 100, 15324-15328, (2003)
[29] Metropolis, N.; Rosenbluth, A.; Rosenbluth, N.; Teller, A.; Teller, E., Equations of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092, (1953)
[30] Moyeed, R. A.; Baddeley, A. J., Stochastic approximation of the MLE for a spatial point pattern, Scand. J. Statist., 18, 39-50, (1991) · Zbl 0723.62047
[31] Müller, P., 1991. A generic approach to posterior integration and Gibbs sampling. Working Paper, Purdue University.
[32] Murray, I., Ghahramani, Z., MacKay, D., 2006. MCMC for doubly-intractable distributions. In: Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence UAI06, pp. 359-366.
[33] Ogata, Y.; Tanemura, M., Likelihood analysis of spatial point patterns, J. R. Stat. Soc. Ser. B, 46, 496-518, (1984) · Zbl 0579.62087
[34] Pritchard, J. K.; Seielstad, M. T.; Perez-Lezaun, A.; Feldman, M. T., Population growth of human Y chromosomes: a study of Y chromosome microsatellites, Mol. Biol. Evol., 16, 1791-1798, (1999)
[35] Propp, J.; Wilson, D., Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Struct. Algorithms, 9, 223-252, (1996) · Zbl 0859.60067
[36] R Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/.
[37] Rubio, F. J.; Johansen, A. M., A simple approach to maximum intractable likelihood estimation, Electron. J. Stat., 7, 1632-1654, (2013) · Zbl 1327.62075
[38] Schabenberger, O.; Gotway, C., Statistical methods for spatial data analysis, (2002), Chapman and Hall
[39] Sköld, M.; Roberts, G. O., Density estimation for the metropolis-Hastings algorithm, Scand. J. Statist., 30, 699-718, (2003) · Zbl 1055.65020
[40] Strauss, D., The many faces of logistic regression, Amer. Statist., 46, 321-327, (1992)
[41] Varin, C.; Reid, N.; Firth, D., An overview of composite likelihood methods, Statist. Sinica, 21, 5-42, (2011) · Zbl 05849508
[42] Wand, M. P.; Jones, M. C., Multivariate plugin bandwidth selection, Comput. Statist., 9, 97-116, (1994) · Zbl 0937.62055
[43] Wang, Z.; Zheng, Y., Analysis of binary data via a centered spatial-temporal autologistic regression model, Environ. Ecol. Stat., 20, 37-57, (2013)
[44] Wright, K., 2013. Agridat: agricultural datasets. R package version 1.8. URL: http://CRAN.R-project.org/package=agridat.
[45] Zheng, Y.; Zhu, J., Markov chain Monte Carlo for a spatial-temporal autologistic regression model, J. Comput. Graph. Statist., 17, 123-137, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.