×

A Fortran program for the numerical integration of the one-dimensional Schrödinger equation using exponential and Bessel fitting methods. (English) Zbl 0850.65137

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)

Software:

PHASE1
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Raptis, A. D.; Cash, J. R., Comput. Phys. Commun., 44, 95 (1987)
[2] Raptis, A. D.; Allison, A. C., Comput. Phys. Commun., 14, 1 (1978)
[3] Ixarou, L. Gr.; Rizea, M., Comput. Commun., 19, 23 (1980)
[4] Raptis, A. D., Computing, 28, 373 (1982)
[5] Raptis, A. D., Comput. Phys. Commun., 24, 1 (1981)
[6] Cash, J. R.; Raptis, A. D., Comput. Phys. Commun., 33, 299 (1984)
[7] Raptis, A. D.; Cash, J. R., Comput. Phys. Commun., 36, 113 (1985)
[8] Lyche, T., Numer. Math., 19, 65 (1972)
[9] Raptis, A. D., Comput. Phys. Commun., 28, 427 (1983)
[10] Cash, J. R., Numer. Math., 37, 355 (1981)
[11] Abramowitz, M.; Stegun, I. A., (Handbook of Mathematical Functions (1965), Dover: Dover New York)
[12] Coleman, J. P.; Mohamed, J., Comput. Phys. Commun., 17, 283 (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.