×

Regular approximations of singular Sturm-Liouville problems with limit-circle endpoints. (English) Zbl 1088.34018

The authors investigate the general limit-circle Sturm-Liouville problem (SLP) with separated or coupled boundary conditions. A theory for continuous eigenvalue branches of a one-parameter family of “induced realizations” is established. Results are then extended from regular to singular SLPs for selfadjoint realization \(S\). Every eigenvalue of \(S\) is the limit of such a continuous eigenvalue branch.
Cases of interest are when at least one endpoint is oscillatory or the leading coefficient function changes sign, leading to jump discontinuities in the continuous eigenvalue branch. Results could be used to construct algorithms for the numerical computation of eigenvalue of SLPs.

MSC:

34B24 Sturm-Liouville theory
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators

Software:

SLEIGN2
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. B. Bailey, W. N. Everitt, J. Weidmann and A. Zettl, Regular approximations of singular Sturm-Liouville problems, Results in Mathematics, 23(1993), 3–22. · Zbl 0778.34015 · doi:10.1007/BF03323127
[2] P. B. Bailey, W. N. Everitt and A. Zettl, Computing eigenvalues of singular Sturm-Liouville problems, Results in Mathematics, 20(1991), 391–423. · Zbl 0755.65082 · doi:10.1007/BF03323182
[3] P. B. Bailey, W. N. Everitt and A. Zettl, The SLEIGN2 Sturm-Liouville code, ACM TOMS, ACM Trans. Math. Software, 21(2001), 143–192. · Zbl 1070.65576 · doi:10.1145/383738.383739
[4] P. Binding and H. Volkmer, Oscillation theory for Sturm-Liouville problems with indefinite coefficients, Proc. Roy. Soc. Edinburgh Sect. A, 131(2001), 989–1002. · Zbl 1002.34018 · doi:10.1017/S0308210500001232
[5] X. Cao, Q. Kong, H. Wu, and A. Zettl, Sturm-Liouville problems whose leading coefficient function changes sign, Canadian J. Math, 55(2003), 724–749. · Zbl 1055.34051 · doi:10.4153/CJM-2003-031-0
[6] D.E. Edmunds and W.D. Evans, Spectral theory and differential operators, Oxford University Press, 1987. · Zbl 0628.47017
[7] M. S. P. Eastham, Q. Kong, H. Wu and A. Zettl, Inequalities among eigenvalues of Sturm-Liouville problems, J. Inequalities and Appl., 3(1999), 25–43. · Zbl 0927.34017
[8] W. N. Everitt, M. Marietta and A. Zettl, Inequalities and Eigenvalues of Sturm-Liouville Problems Near a Singular Boundary, J. Inequalities and Appl, 6(2001), 405–413. · Zbl 1006.34024 · doi:10.1155/S1025583401000248
[9] W. N. Everitt, M. Möller and A. Zettl, Discontinuous dependence of the n-th Sturm-Liouville eigenvalue, International Series of Numerical Mathematics, 123(1997), Birkhäuser Verlag Basel. 145–150. · Zbl 0886.34023
[10] W. N. Everitt, M. Möller and A. Zettl, Sturm-Liouville problems and discontinuous eigenvalues, Proc. Roy. Soc. Edinburgh Sect A, 129(1999), 707–716. · Zbl 0933.34015 · doi:10.1017/S0308210500013093
[11] W. N. Everitt, G. Nasri-Roudsari, Sturm-Liouville problems with coupled boundary conditions and Lagrange interpolation series: II. Rendiconti di Matematica, Roma (7) 20 (2000), 199–238. · Zbl 0998.34023
[12] W. N. Everitt, C. Shubin, G. Stolz and A. Zettl, Sturm-Liouville problems with an infinite number of interior singularities. Spectral Theory and Computational Methods of Sturm-Liouville problems, ed. D. Hinton and P. W. Schaefer, Lecture notes in Pure and Applied Math., 191(1997), Dekker. 211–249. · Zbl 0881.34039
[13] P.R. Halmos, Finite dimensional vector spaces, Van Nostrand, New Jersey, 1958. · Zbl 0107.01404
[14] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985. · Zbl 0576.15001
[15] T. Kato, Perturbation theory for linear operators. Springer Verlag, Heidelberg, 1980. · Zbl 0435.47001
[16] Q. Kong, H. Wu and A. Zettl, Dependence of eigenvalues on the problem, Math. Nachr., 188(1997), 173–201. · Zbl 0888.34017 · doi:10.1002/mana.19971880111
[17] Q. Kong, H. Wu and A. Zettl, Dependence of the n-th Sturm-Liouville eigenvalue on the problem, J. Differential Equations, 156(1999), 328–354. · Zbl 0932.34081 · doi:10.1006/jdeq.1998.3613
[18] Q. Kong, H. Wu and A. Zettl, Inequalities among of singular Sturm-Liouville problems, Dynamic Systems and Applications, 8(1999), 517–531. · Zbl 0942.34020
[19] Q. Kong, H. Wu and A. Zettl, Geometric aspects of Sturm-Liouville problems, I. Structure on spaces of boundary conditions, Proc. Roy. Soc. Edinburgh Sect A, 130(2000), 561–589. · Zbl 0957.34024
[20] Q. Kong, H. Wu and A. Zettl, Multiplicity of Sturm-Liouville eigenvalues, preprint. · Zbl 1069.34124
[21] M. Möller, On the unboundedness below of the Sturm-Liouville operator, Proc. Roy. Soc. Edinburgh Sect. A, 129(1999), 1011–1015. · Zbl 0947.34010 · doi:10.1017/S030821050003105X
[22] M. A. Naimark, Linear Differential Operators, Ungar, New York, 1968. · Zbl 0227.34020
[23] H.-D. Niessen and A. Zettl, Singular Sturm-Liouville Problems: The Friedrichs extension and comparison of eigenvalues, Proc. London Math. Soc, 64(1992), 545–578. · Zbl 0768.34015 · doi:10.1112/plms/s3-64.3.545
[24] J. Weidmann, Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258, Springer Verlag, Berlin, 1987. · Zbl 0647.47052
[25] A. Zettl, Sturm-Liouville problems, Spectral Theory and Computational Methods of Sturm-Liouville problems, ed. D. Hinton and P. W. Schaefer, Lecture notes in Pure and Applied Math., 191(1997), Dekker. 1–104.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.