×

On integrability and quasi-periodic wave solutions to a \((3+1)\)-dimensional generalized KdV-like model equation. (English) Zbl 1410.35158

Summary: Under investigation in this paper is the integrability of a \((3+1)\)-dimensional generalized KdV-like model equation, which can be reduced to several integrable equations. With help of Bell polynomials, an effective method is presented to succinctly derive the bilinear formalism of the equation, based on which, the soliton solutions and periodic wave solutions are also constructed by using Riemann theta function. Furthermore, the Bäcklund transformation, Lax pairs, and infinite conservation laws of the equation can easily be derived, respectively. Finally, the relationship between periodic wave solutions and soliton solutions are systematically established. It is straightforward to verify that these periodic waves tend to soliton solutions under a small amplitude limit.

MSC:

35Q51 Soliton equations
35B15 Almost and pseudo-almost periodic solutions to PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

Software:

Maple; PDEBellII
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bluman, G. W.; Kumei, S., Symmetries and differential equations, Graduate Texts in Math, 81 (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0698.35001
[2] Hirota, R., Direct Methods in Soliton Theory (2004), Springer: Springer Berlin
[3] Matveev, V. B.; Salle, M. A., Darboux Transformation and Solitons (1991), Springer: Springer Berlin · Zbl 0744.35045
[4] Ablowitz, M. J.; Clarkson, P. A., Solitons; Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001
[5] Kudryashov, N. A., The Analytical Theory of Nonlinear Differential Equations, 360 (2004), Moscow-Izhevsk: The Institute of Computer Investigations · Zbl 1116.54001
[6] Kudryashov, N. A.; Demina, M. V., Traveling wave solutions of the generalized nonlinear evolution equations, Appl. Math. Comput., 210, 551-557 (2009) · Zbl 1170.35514
[7] Kudryashov, N. A., On “new travelling wave solutions” of the KdV and the KdV-burgers equations, Commun. Nonlinear Sci. Numer. Simulat., 14, 1891-1900 (2009) · Zbl 1221.35343
[8] Kudryashov, N. A., Soliton, rational and special solutions of the Korteweg-de Vries hierarchy, Appl. Math. Comput., 217, 1774-1779 (2010) · Zbl 1203.35229
[9] Kudryashov, N. A.; Sinelshchikov, D. I., Elliptic solutions for a family of fifth order nonlinear evolution equations, Appl. Math. Comput., 218, 6991-6997 (2012) · Zbl 1246.35079
[10] Antonova, M.; Biswas, A., Adiabatic parameter dynamics of perturbed solitary waves, Commun. Nonlinear Sci. Numer. Simul., 14, 3, 734-748 (2009) · Zbl 1221.35321
[11] Biswas, A., 1-soliton solution of the \(K\)(m, n) equation with generalized evolution and time-dependent damping and dispersion, Compu. Math. Appl., 59, 2536-2540 (2010) · Zbl 1193.35181
[12] Triki, H.; Biswas, A., Soliton solutions for a generalized fifth-order KdV equation with \(t\)-dependent coefficients, Wave Random Complex, 21, 151-160 (2011) · Zbl 1274.76176
[13] Johnpillai, A. G.; Khalique, C. M.; Biswas, A., Exact solutions of the MKdV equation with time-dependent coefficients, Math. Commun., 16, 509-518 (2011) · Zbl 1246.65190
[14] Triki, H.; Milovic, D.; Hayat, T.; Aldossary, O. M.; Biswas, A., Topological soliton solutions of (2+1)-dimensional KdV equation with power law nonlinearity and time-dependent coefficients, Int. J. Nonlinear Sci. Numer. Simul., 12, 45-50 (2011)
[15] Triki, H.; Milovic, D.; Biswas, A., Solitary waves and shock waves of the KdV6 equation, Ocean Eng., 73, 119-125 (2013)
[16] Biswas, A.; Milovic, D.; Ranasinghe, A., Solitary waves of Boussinesq equation in a power law media, Commun. Nonlinear Sci. Numer. Simul., 14, 3738-3742 (2009) · Zbl 1221.35311
[17] Bhrawy, A. H.; Abdelkawy, M. A.; Biswas, A., Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended jacobi’s elliptic function method, Commun. Nonlinear Sci. Numer. Simul., 18, 915-925 (2013) · Zbl 1261.35044
[18] Bhrawy, A. H.; Abdelkawy, M. A.; Biswas, A., Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics, Indian J. Phys., 87, 1125-1131 (2013)
[19] Bhrawy, A. H.; Abdelkawy, M. A.; Kumar, S.; Biswas, A., Solitons and other solutions to Kadomtsev-Petviashvili equation of b-typeby, Romanian J. Phys., 58, 729-748 (2013)
[20] Ebadi, G.; Fard, N. Y.; Bhrawy, A. H.; Kumar, S.; Triki, H.; Yildirim, A.; Biswas, A., Solitons and other solutions to the (3+1)-dimensional extended Kadomtsev-Petviashvili equation with power law nonlinearity, Romanian Rep. Phys., 65, 27-62 (2013)
[21] Triki, H.; Kara, A. H.; Bhrawy, A.; Biswas, A., Soliton solution and conservation law of gear-Grimshaw model for shallow water waves, Acta Phys. Polonica A., 125, 1099-1106 (2014)
[22] Triki, H.; Mirzazadeh, M.; Bhrawy, A. H.; Razborova, P.; Biswas, A., Solitons and other solutions to long-wave short-wave interaction equation, Romanian J. Phys., 60, 72-86 (2015)
[23] Fard, N. Y.; Foroutan, M. R.; Eslami, M.; Mirzazadeh, M.; Biswas, A., Solitary waves and other solutions to Kadomtsev-Petviashvili equation with spatio-temporal dispersion, Romanian J. Phys., 60, 1337-1360 (2015)
[24] Guo, Y. C.; Biswas, A., Solitons and other solutions to Gardner equation, Romanian J. Phys., 60, 961-970 (2015)
[25] Ma, P. L.; Tian, S. F.; Zhang, T. T., On symmetry-preserving difference scheme to a generalized benjamin equation and third-order burgers equation, Appl. Math. Lett., 50, 146-152 (2015) · Zbl 1330.65134
[26] Tu, J. M.; Tian, S. F.; Xu, M. J.; Zhang, T. T., On lie symmetries, optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation, Appl. Math. Comput., 275, 345-352 (2016) · Zbl 1410.35157
[27] Tian, S. F.; Ma, P. L., On the quasi-periodic wave solutions and asymptotic analysis to a (3+ 1)-dimensional generalized Kadomtsev-Petviashvili equation, Commun. Theore. Phys., 62, 245-258 (2014) · Zbl 1297.35210
[28] Tian, S. F.; Zhang, Y. F.; Feng, B. L.; Zhang, H. Q., On the lie algebras, generalized symmetries and Darboux transformations of the fifth-order evolution equations in shallow water, Chin. Ann. Math., 36 B, 543-560 (2015) · Zbl 1321.35190
[29] Nakamura, A., A direct method of calculating periodic wave solutions to nonlinear evolution equations.exact one and two-periodic wave solution of the coupled bilinear equations, J. Phys. Soc. Japan., 48, 1701-1705 (1980) · Zbl 1334.35006
[30] Bell, E. T., Exponential polynomials, Ann. Math., 35, 258-277 (1834) · Zbl 0009.21202
[31] Gilson, C.; Lambert, F.; Nimmo, J., On the combinatorics of the Hirota d-operators, Proc. R. Soc. Lond. A, 452, 223-234 (1996) · Zbl 0868.35101
[32] Lambert, F.; Springael, J.; Willox, R., Construction of Bäcklund transformations with binary bell polynomials, J. Phys. Soc. Jpn., 66, 2211-2213 (1997) · Zbl 0947.37052
[33] Fan, E. G.; Hon, Y. C., On a direct procedure for the quasi-periodic wave solutions of the supersymmetric Ito is equation, Rep. Math. Phys., 66, 355-365 (2010) · Zbl 1236.81114
[34] Fan, E. G.; Hon, Y. C., A kind of explicit quasi-periodic solution and its limit for the Toda lattice equation, Mod. Phys. Lett., 22, 547-553 (2008) · Zbl 1151.82320
[35] Fan, E. G.; Hon, Y. C., Super extension of bell polynomials with applications to supersymmetric equations, J. Math. Phys., 53, 013503 (2012) · Zbl 1273.81107
[36] Ma, W. X.; Fan, E. G., Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl., 61, 950-959 (2011) · Zbl 1217.35164
[37] Ma, W. X.; Zhou, R. G.; Gao, L., Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1) dimensions, Mod. Phys. Lett. A, 24, 1677-1688 (2009) · Zbl 1168.35426
[38] Ma, W. X., Trilinear equations, bell polynomials, and resonant solutions, Front. Math. China, 8, 5, 1139-1156 (2013) · Zbl 1276.35131
[39] Chow, K. W., A class of exact, periodic solutions of nonlinear envelope equations, J. Math. Phys., 36, 4125-4137 (1995) · Zbl 0848.35122
[40] Miao, Q.; Wang, Y. H.; Chen, Y.; Yang, Y. Q., PDEBellII A Maple package for finding bilinear forms, bilinear Bäcklund transformations, Lax pairs and conservation laws of the KdV-type equations, Comput. Phys. Commun., 185, 357-367 (2014) · Zbl 1344.37003
[41] Tian, S. F.; Zhang, H. Q., Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations, J. Math. Anal. Appl., 371, 585-608 (2010) · Zbl 1201.35072
[42] Tian, S. F.; Zhang, H. Q., A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations, Commun. Nonlinear Sci. Numer. Simulat., 16, 173-186 (2011) · Zbl 1221.37153
[43] Tian, S. F.; Zhang, H. Q., On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation, J. Phys. A: Math. Theor., 45 (2012), 055203(29pp) · Zbl 1232.35144
[44] Tian, S. F.; Zhang, H. Q., On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids, Stud. Appl. Math., 132, 212-246 (2014) · Zbl 1288.35403
[45] Tian, S. F.; Zhang, H. Q., Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation, Chaos, Solitons Fractals, 47, 27-41 (2013) · Zbl 1258.35011
[46] Kudryashov, N. A.; Ryabov, P. N., Exact solutions of one pattern formation model, Appl. Math. Comput., 232, 1090-1093 (2014) · Zbl 1410.35173
[47] Ryabov, P. N.; Sinelshchikov, D. I.; Kochanov, M. B., Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations, Appl. Math. Comput., 218, 3965-3972 (2011) · Zbl 1246.35015
[48] Biswas, A., Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients, Nonlinear Dyn., 58, 1-2, 345-348 (2009) · Zbl 1183.35241
[49] Kara, A. H.; Razborova, P.; Biswas, A., Solitons and conservation laws of coupled Ostrovsky equation for internal waves, Appl. Math. Comput., 258, 95-99 (2015) · Zbl 1338.35393
[50] Lou, S. Y., Dromion-like structures in a (3+1)-dimensional KdV-type equation, J. Phys. A Math. Gen., 29, 5989-6001 (1996) · Zbl 0903.35064
[51] Wang, D. S.; Yin, S. J.; Tian, Y.; Liu, Y. F., Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects, Appl. Math. Comput., 229, 296-309 (2014) · Zbl 1364.35343
[52] Younis, M.; ur Rehman, H.; Iftikhar, M., Travelling wave solutions to some nonlinear evolution equations, Appl. Math. Comput., 249, 81-88 (2014) · Zbl 1338.34029
[53] Tian, S. F., Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach, J. Nonlinear Math. Phys., 22, 2, 180-193 (2015) · Zbl 1420.35297
[54] Bluman, G. W.; Tian, S. F.; Yang, Z. Z., Nonclassical analysis of the nonlinear kompaneets equation, J. Eng. Math., 84, 87-97 (2014) · Zbl 1367.35144
[55] Peng, Y. Z., A new (2+1)-dimensional KdV equation and its localized structures, Commun. Theor. Phys., 54, 863-865 (2010) · Zbl 1220.35154
[56] Wang, Y. H.; Chen, Y., Binary bell polynomial manipulations on the integrability of a generalized (2+1)-dimensional KdV equation, J. Maths. Anal. Appl., 400, 624-634 (2013) · Zbl 1258.35180
[57] Wazwaz, A. M., Compacton solutions of higher order nonlinear dispersive KdV-like equations, Appl. Math. Comput., 147, 449-460 (2004) · Zbl 1045.35071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.