Semi-implicit time integration of atmospheric flows with characteristic-based flux partitioning. (English) Zbl 1419.76478

Summary: This paper presents a characteristic-based flux partitioning for the semi-implicit time integration of atmospheric flows. Nonhydrostatic models require the solution of the compressible Euler equations. The acoustic time scale is significantly faster than the advective scale, yet it is typically not relevant to atmospheric and weather phenomena. The acoustic and advective components of the hyperbolic flux are separated in the characteristic space. High-order, conservative additive Runge-Kutta methods are applied to the partitioned equations so that the acoustic component is integrated in time implicitly with an unconditionally stable method, while the advective component is integrated explicitly. The time step of the overall algorithm is thus determined by the advective scale. Benchmark flow problems are used to demonstrate the accuracy, stability, and convergence of the proposed algorithm. The computational cost of the partitioned semi-implicit approach is compared with that of explicit time integration.


76M20 Finite difference methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
86A10 Meteorology and atmospheric physics


PETSc; HyPar; ExnerFOAM
Full Text: DOI arXiv


[2] N. Ahmad, D. Bacon, A. Sarma, D. Koračin, R. Vellore, Z. Boybeyi, and J. Lindeman, {\it Simulations of non-hydrostatic atmosphere using conservation laws package}, in 45th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV), American Institute of Aeronautics and Astronautics, Reston, VA, 2007.
[3] N. Ahmad and J. Lindeman, {\it Euler solutions using flux-based wave decomposition}, Internat. J. Numer. Methods Fluids, 54 (2007), pp. 47-72. · Zbl 1113.76054
[4] N. Ahmad and F. Proctor, {\it The high-resolution wave-propagation method applied to meso- and micro-scale flows}, in 50th AIAA Aerospace Sciences Meeting and Exhibit (Nashville, TN), American Institute of Aeronautics and Astronautics, Reston, VA, 2012.
[5] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, {\it Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations}, Appl. Numer. Math., 25 (1997), pp. 151-167. · Zbl 0896.65061
[6] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, {\it PETSc Users Manual}, Tech. report ANL-95/11 - Revision 3.4, Argonne National Laboratory, Lemont, IL, 2013.
[7] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, {\it PETSc Web Page}, http://www.mcs.anl.gov/petsc (2013).
[8] T. Benacchio, W. P. O’Neill, and R. Klein, {\it A blended soundproof-to-compressible numerical model for small to mesoscale atmospheric dynamics}, Monthly Weather Rev., 142 (2014), pp. 4416-4438.
[9] L. Bonaventura, {\it A semi-implicit semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows}, J. Comput. Phys., 158 (2000), pp. 186-213. · Zbl 0963.76058
[10] N. Botta, R. Klein, S. Langenberg, and S. Lützenkirchen, {\it Well balanced finite volume methods for nearly hydrostatic flows}, J. Comput. Phys., 196 (2004), pp. 539-565. · Zbl 1109.86304
[11] A. Bourchtein and L. Bourchtein, {\it A semi-implicit time-splitting scheme for a regional nonhydrostatic atmospheric model}, Comput. Phys. Comm., 183 (2012), pp. 570-587. · Zbl 1426.76456
[12] J. C. Butcher, {\it Numerical Methods for Ordinary Differential Equations}, Wiley, New York, 2003. · Zbl 1040.65057
[13] E. M. Constantinescu and A. Sandu, {\it Multirate timestepping methods for hyperbolic conservation laws}, J. Sci. Comput., 33 (2007), pp. 239-278. · Zbl 1127.76033
[14] E. M. Constantinescu and A. Sandu, {\it Extrapolated implicit-explicit time stepping}, SIAM J. Sci. Comput., 31 (2010), pp. 4452-4477, http://dx.doi.org/10.1137/080732833. · Zbl 1209.65069
[15] P. Das, {\it A non-Archimedean approach to the equations of convection dynamics}, J. Atmospher. Sci., 36 (1979), pp. 2183-2190.
[16] D. R. Durran, {\it Numerical Methods for Fluid Dynamics: With Applications to Geophysics}, Texts Appl. Math. 32, Springer-Verlag, New York, 2010. · Zbl 1214.76001
[17] D. R. Durran and P. N. Blossey, {\it Implicit-explicit multistep methods for fast-wave-slow-wave problems}, Monthly Weather Rev., 140 (2012), pp. 1307-1325.
[18] A. Gassmann, {\it An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models}, Meteorology Atmospher. Phys., 88 (2005), pp. 23-38.
[19] C. Gatti-Bono and P. Colella, {\it An anelastic allspeed projection method for gravitationally stratified flows}, J. Comput. Phys., 216 (2006), pp. 589-615. · Zbl 1220.86005
[20] C. W. Gear and D. R. Wells, {\it Multirate linear multistep methods}, BIT, 24 (1984), pp. 484-502. · Zbl 0555.65046
[21] D. Ghosh, {\it Compact-Reconstruction Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws}, Ph.D. thesis, University of Maryland, College Park, MD, 2013.
[22] D. Ghosh and J. D. Baeder, {\it Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws}, SIAM J. Sci. Comput., 34 (2012), pp. A1678-A1706, http://dx.doi.org/10.1137/110857659. · Zbl 1387.65085
[23] D. Ghosh and J. D. Baeder, {\it Weighted non-linear compact schemes for the direct numerical simulation of compressible, turbulent flows}, J. Sci. Comput., 61 (2014), pp. 61-89. · Zbl 1299.76098
[24] D. Ghosh and E. M. Constantinescu, {\it Well-balanced, conservative finite-difference algorithm for atmospheric flows}, AIAA J., 54 (2016), pp. 1370-1385.
[25] D. Ghosh, E. M. Constantinescu, and J. Brown, {\it Efficient implementation of nonlinear compact schemes on massively parallel platforms}, SIAM J. Sci. Comput., 37 (2015), pp. C354-C383, http://dx.doi.org/10.1137/140989261. · Zbl 1320.65115
[26] D. Ghosh, S. Medida, and J. D. Baeder, {\it Application of compact-reconstruction weighted essentially nonoscillatory schemes to compressible aerodynamic flows}, AIAA J., 52 (2014), pp. 1858-1870.
[27] F. X. Giraldo, J. F. Kelly, and E. M. Constantinescu, {\it Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA)}, SIAM J. Sci. Comput., 35 (2013), pp. B1162-B1194, http://dx.doi.org/10.1137/120876034. · Zbl 1280.86008
[28] F. X. Giraldo and M. Restelli, {\it A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases}, J. Comput. Phys., 227 (2008), pp. 3849-3877. · Zbl 1194.76189
[29] F. X. Giraldo, M. Restelli, and M. Läuter, {\it Semi-implicit formulations of the Navier-Stokes equations: Application to nonhydrostatic atmospheric modeling}, SIAM J. Sci. Comput., 32 (2010), pp. 3394-3425, http://dx.doi.org/10.1137/090775889. · Zbl 1237.76153
[30] G. A. Grell, J. Dudhia, and D. R. Stauffer, {\it A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM\textup5)}, Tech. report NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, CO, 1994; available online at https://opensky.ucar.edu/islandora/object/technotes
[31] C. Hirsch, {\it Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics}, Vol. 1 & 2, Elsevier Science, New York, 2007.
[32] R. M. Hodur, {\it The Naval Research Laboratory’s coupled ocean/atmosphere mesoscale prediction system (COAMPS)}, Monthly Weather Rev., 125 (1997), pp. 1414-1430.
[33] Z. I. Janjic, {\it A nonhydrostatic model based on a new approach}, Meteorology Atmospher. Phys., 82 (2003), pp. 271-285.
[34] S. Jebens, O. Knoth, and R. Weiner, {\it Explicit two-step peer methods for the compressible Euler equations}, Monthly Weather Rev., 137 (2009), pp. 2380-2392.
[35] S. Jebens, O. Knoth, and R. Weiner, {\it Partially implicit peer methods for the compressible Euler equations}, J. Comput. Phys., 230 (2011), pp. 4955-4974. · Zbl 1416.76178
[36] G.-S. Jiang and C.-W. Shu, {\it Efficient implementation of weighted ENO schemes}, J. Comput. Phys., 126 (1996), pp. 202-228. · Zbl 0877.65065
[37] C. A. Kennedy and M. H. Carpenter, {\it Additive Runge-Kutta schemes for convection-diffusion-reaction equations}, Appl. Numer. Math., 44 (2003), pp. 139-181. · Zbl 1013.65103
[38] J. B. Klemp, W. C. Skamarock, and J. Dudhia, {\it Conservative split-explicit time integration methods for the compressible nonhydrostatic equations}, Monthly Weather Rev., 135 (2007).
[39] J. B. Klemp and R. B. Wilhelmson, {\it The simulation of three-dimensional convective storm dynamics}, J. Atmospher. Sci., 35 (1978), pp. 1070-1096.
[40] M. Kwizak and A. J. Robert, {\it A semi-implicit scheme for grid point atmospheric models of the primitive equations}, Monthly Weather Rev., 99 (1971), pp. 32-36.
[41] C. B. Laney, {\it Computational Gasdynamics}, Cambridge University Press, Cambridge, UK, 1998. · Zbl 0947.76001
[42] S. K. Lele, {\it Compact finite difference schemes with spectral-like resolution}, J. Comput. Phys., 103 (1992), pp. 16-42. · Zbl 0759.65006
[43] R. J. LeVeque, {\it Finite Volume Methods for Hyperbolic Problems}, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, UK, 2002. · Zbl 1010.65040
[44] X.-D. Liu, S. Osher, and T. Chan, {\it Weighted essentially non-oscillatory schemes}, J. Comput. Phys., 115 (1994), pp. 200-212. · Zbl 0811.65076
[45] S. Marras, M. Nazarov, and F. X. Giraldo, {\it Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES}, J. Comput. Phys., 301 (2015), pp. 77-101. · Zbl 1349.76127
[46] L. Pareschi and G. Russo, {\it Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation}, J. Sci. Comput., 25 (2005), pp. 129-155. · Zbl 1203.65111
[47] J. M. Reisner, A. Mousseau, A. A. Wyszogrodzki, and D. A. Knoll, {\it An implicitly balanced hurricane model with physics-based preconditioning}, Monthly Weather Rev., 133 (2005), pp. 1003-1022.
[48] D. R. Reynolds, R. Samtaney, and C. S. Woodward, {\it Operator-based preconditioning of stiff hyperbolic systems}, SIAM J. Sci. Comput., 32 (2010), pp. 150-170, http://dx.doi.org/10.1137/080713331. · Zbl 1410.65090
[49] P. L. Roe, {\it Approximate Riemann solvers, parameter vectors, and difference schemes}, J. Comput. Phys., 43 (1981), pp. 357-372. · Zbl 0474.65066
[50] A. Rohde, {\it Eigenvalues and eigenvectors of the Euler equations in general geometries}, in 15th AIAA Computational Fluid Dynamics Conference (Anaheim, CA), American Institute of Aeronautics and Astronautics, Reston, VA, 2001.
[51] V. V. Rusanov, {\it The calculation of the interaction of non-stationary shock waves and obstacles}, USSR Comput. Math. Math. Phys., 1 (1962), pp. 304-320.
[52] Y. Saad, {\it Iterative Methods for Sparse Linear Systems}, 2nd ed., SIAM, Philadelphia, 2003. · Zbl 1031.65046
[53] Y. Saad and M. H. Schultz, {\it GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems}, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869, http://dx.doi.org/10.1137/0907058. · Zbl 0599.65018
[54] A. Sandu and E. M. Constantinescu, {\it Multirate explicit Adams methods for time integration of conservation laws}, J. Sci. Comput., 38 (2009), pp. 229-249. · Zbl 1203.65112
[55] M. Satoh, {\it Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme}, Monthly Weather Rev., 130 (2002), pp. 1227-1245.
[56] C.-W. Shu, {\it Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws}, Tech. report NASA CR-97-206253, ICASE Report 97-65, Institute for Computer Applications in Science and Engineering, Hampton, VA, 1997.
[57] W. C. Skamarock and J. B. Klemp, {\it Efficiency and accuracy of the Klemp-Wilhelmson time-splitting technique}, Monthly Weather Rev., 122 (1994), pp. 2623-2630.
[58] W. C. Skamarock and J. B. Klemp, {\it A time-split nonhydrostatic atmospheric model for weather research and forecasting applications}, J. Comput. Phys., 227 (2008), pp. 3465-3485. · Zbl 1132.86312
[59] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, {\it A Description of the Advanced Research WRF Version \textup2}, Tech. report, DTIC Document, 2005.
[60] P. K. Smolarkiewicz, C. Kühnlein, and N. P. Wedi, {\it A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics}, J. Comput. Phys., 263 (2014), pp. 185-205. · Zbl 1349.86041
[61] A. St-Cyr and D. Neckels, {\it A fully implicit Jacobian-free high-order discontinuous Galerkin mesoscale flow solver}, in Proceedings of the 9th International Conference on Computational Science (ICCS 2009), Springer-Verlag, Berlin, Heidelberg, 2009, pp. 243-252.
[62] P. Ullrich and C. Jablonowski, {\it Operator-split Runge-Kutta-Rosenbrock methods for nonhydrostatic atmospheric models}, Monthly Weather Rev., 140 (2012), pp. 1257-1284.
[63] H. Weller and A. Shahrokhi, {\it Curl-free pressure gradients over orography in a solution of the fully compressible Euler equations with implicit treatment of acoustic and gravity waves}, Monthly Weather Rev., 142 (2014), pp. 4439-4457.
[64] J. Wensch, O. Knoth, and A. Galant, {\it Multirate infinitesimal step methods for atmospheric flow simulation}, BIT, 49 (2009), pp. 449-473. · Zbl 1419.76510
[65] L. J. Wicker, {\it A two-step Adams-Bashforth-Moulton split-explicit integrator for compressible atmospheric models}, Monthly Weather Rev., 137 (2009), pp. 3588-3595.
[66] L. J. Wicker and W. C. Skamarock, {\it Time-splitting methods for elastic models using forward time schemes}, Monthly Weather Rev., 130 (2002), pp. 2088-2097.
[67] M. Xue, K. K. Droegemeier, and V. Wong, {\it The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part \textupI: Model dynamics and verification}, Meteorology Atmospher. Phys., 75 (2000), pp. 161-193.
[68] C. Yang and X.-C. Cai, {\it A scalable fully implicit compressible Euler solver for mesoscale nonhydrostatic simulation of atmospheric flows}, SIAM J. Sci. Comput., 36 (2014), pp. S23-S47, http://dx.doi.org/10.1137/130919167. · Zbl 1305.86005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.