×

Preconditioned TBiCOR and TCORS algorithms for solving the Sylvester tensor equation. (English) Zbl 1510.65080

Summary: In this paper, the preconditioned TBiCOR and TCORS methods are presented for solving the Sylvester tensor equation. A tensor Lanczos \(\mathcal{L} \)-Biorthogonalization algorithm (TLB) is derived for solving the Sylvester tensor equation. Two improved TLB methods are presented. One is the biconjugate \(\mathcal{L} \)-orthogonal residual algorithm in tensor form (TBiCOR), which implements the \(L U\) decomposition for the triangular coefficient matrix derived by the TLB method. The other is the conjugate \(\mathcal{L} \)-orthogonal residual squared algorithm in tensor form (TCORS), which introduces a square operator to the residual of the TBiCOR algorithm. A preconditioner based on the nearest Kronecker product is used to accelerate the TBiCOR and TCORS algorithms, and we obtain the preconditioned TBiCOR algorithm (PTBiCOR) and preconditioned TCORS algorithm (PTCORS). The proposed algorithms are proved to be convergent within finite steps of iteration without roundoff errors. Several examples illustrate that the preconditioned TBiCOR and TCORS algorithms present excellent convergence.

MSC:

65F45 Numerical methods for matrix equations
15A24 Matrix equations and identities
15A69 Multilinear algebra, tensor calculus
65F08 Preconditioners for iterative methods
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beik, F. A.; Movahed, F.; Ahmadi-Asl, S., On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations, Numer. Linear Algebra, 23, 444-466 (2016) · Zbl 1413.65128
[2] August, M.; Banuls, M. C.; Huckle, T., On the approximation of functionals of very large Hermitian matrices represented as matrix product operators, Electron. Trans. Numer. Anal., 46, 215-232 (2017) · Zbl 1369.65063
[3] Bai, Z. Z.; Golub, G.; Ng, M., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24, 603-626 (2002) · Zbl 1036.65032
[4] Ballani, J.; Grasedyck, L., A projection method to solve linear systems in tensor format, Numer. Linear Algebra, 20, 27-43 (2013) · Zbl 1289.65049
[5] Beik, F. A.; Najafi-Kalyani, M.; Reiche, L., Iterative Tikhonov regularization of tensor equations based on the Arnoldi process and some of its generalizations, Appl. Numer. Math., 151, 425-447 (2020) · Zbl 1432.65049
[6] Bentbib, A. H.; El-Halouy, S.; Sadek, E. M., Krylov subspace projection method for Sylvester tensor equation with low rank right-hand side, Numer. Algorithms, 84, 1411-1430 (2020) · Zbl 1450.65039
[7] B.W. Bader, T.G. Kolda, Matlab tensor toolbox, version 2.5, 2012. Available online at http://www.sandia.gov/tgkolda/TensorToolbox/.
[8] Calvetti, D.; Reichel, L., Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl., 17, 1, 165-186 (1996) · Zbl 0849.65101
[9] Chen, Z.; Lu, L., A projection method and Kronecker product preconditioner for solving Sylvester tensor equations, Sci. China Ser. A. Math., 55, 1281-1292 (2012) · Zbl 1273.65048
[10] Chen, Z.; Lu, L., A gradient based iterative solutions for Sylvester tensor equations, Math. Probl. Eng., 1-7 (2013) · Zbl 1299.65045
[11] Carpentieri, B.; Jing, Y. F.; Huang, T. Z., The BiCOR and CORS iterative algorithms for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 33, 3020-3036 (2011) · Zbl 1251.65045
[12] Ding, F.; Chen, T., Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. Autom. Control, 50, 1216-1221 (2005) · Zbl 1365.65083
[13] Ding, F.; Chen, T., Iterative least-squares solutions of coupled Sylvester matrix equations, Syst. Control Lett., 54, 95-107 (2005) · Zbl 1129.65306
[14] Golub, G.; Nash, S.; Loan, C. V., A Hessenberg-Schur method for the problem \(A X + X B = C\), IEEE Trans. Autom. Control, 24, 909-913 (1979) · Zbl 0421.65022
[15] Heyouni, M.; Saberi-Movahed, F.; Tajaddini, A., A tensor format for the generalized Hessenberg method for solving Sylvester tensor equations, J. Comput. Appl. Math., 377, 112878 (2020) · Zbl 1437.65024
[16] Huang, B.; Ma, C., An iterative algorithm to solve the generalized Sylvester tensor equations, Linear Multilinear Algebra, 68, 1175-1200 (2018) · Zbl 1453.65084
[17] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 455-500 (2009) · Zbl 1173.65029
[18] Kressner, D.; Tobler, C., Krylov subspace methods for linear systems with tensor product structure, SIAM J. Matrix Anal. Appl., 31, 1688-1714 (2010) · Zbl 1208.65044
[19] Kressner, D.; Tobler, C., Low-rank tensor Krylov subspace methods for parametrized linear systems, SIAM J. Matrix Anal. Appl., 32, 1288-1316 (2011) · Zbl 1237.65034
[20] Grasedyck, L., Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure, Computing, 72, 247-265 (2004) · Zbl 1058.65036
[21] Li, B. W.; Sun, Y. S.; Zhang, D. W., Chebyshev collocation spectral methods for coupled radiation and conduction in a concentric spherical participating medium, J. Heat Trans., 131, 1-9 (2009)
[22] Li, N.; Navasca, C.; Glemn, C., Iterative methods for symmetric outer product tensor decomposition, Electron. Trans. Numer. Anal., 44, 124-139 (2015) · Zbl 1312.65045
[23] Lv, C.; Ma, C., A modified CG algorithm for solving generalized coupled Sylvester tensor equations, Appl. Math. Comput., 365, 124699 (2020) · Zbl 1433.65055
[24] Najafi-Kalyani, M.; Beik, F. A.; Jbilou, K., On global iterative schemes based on Hessenberg process for (ill-posed) Sylvester tensor equations, J. Comput. Appl. Math., 373, 112216 (2020) · Zbl 1437.65026
[25] T. Penzl, Lyapack, a MATLAB toolbox for large Lyapunov and Riccati equations, model reduction problems, and linear-quadratic optimal control problems, 2000, Available online at https://www.tu-chemnitz.de/sfb393/lyapack/.
[26] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Society for Industrial and Applied Mathematics · Zbl 1002.65042
[27] Shi, X. H.; Wei, Y. M.; Ling, S. Y., Backward error and perturbation bounds for high order Sylvester tensor equation, Linear Multilinear Algebra, 61, 1436-1446 (2013) · Zbl 1292.15015
[28] Loan, C. F.V.; Pitsianis, N., Approximation with kronecker products, Proc.: Linear Algebra for Large Scale and Real-Time Applications, vol. 232, 293-314 (1993), Kluwer Publications · Zbl 0813.65078
[29] Xiang, H.; Grigori, L., Kronecker product approximation preconditioners for convection-diffusion model problems, Numer. Linear Algebra, 17, 691-712 (2010) · Zbl 1240.65102
[30] Zhang, X. F.; Wang, Q. W., Developing iterative algorithms to solve Sylvester tensor equations, Appl. Math. Comput., 409, 126403 (2021) · Zbl 1510.15044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.