Hale, Nicholas; Townsend, Alex Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights. (English) Zbl 1270.65017 SIAM J. Sci. Comput. 35, No. 2, A652-A674 (2013). Summary: An efficient algorithm for the accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton’s root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The \(n\)-point quadrature rule is computed in \(\mathcal{O}(n)\) operations to an accuracy of essentially double precision for any \(n\geq 100\). Cited in 61 Documents MSC: 65D32 Numerical quadrature and cubature formulas 41A55 Approximate quadratures Keywords:quadrature; Gauss-Legendre; Gauss-Jacobi; asymptotic expansion; numerical examples; algorithm; Newton’s root-finding method Software:DLMF; LEGENDRE_RULE_FAST; gaussq.f; Chebfun; ORTHPOL; FastGaussQuadrature; nag PDF BibTeX XML Cite \textit{N. Hale} and \textit{A. Townsend}, SIAM J. Sci. Comput. 35, No. 2, A652--A674 (2013; Zbl 1270.65017) Full Text: DOI Link