×

Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations. (English) Zbl 1506.74211

Summary: Since myocardial fibers drive the electric signal propagation throughout the myocardium, accurately modeling their arrangement is essential for simulating heart electrophysiology (EP). Rule-Based-Methods (RBMs) represent a commonly used strategy to include cardiac fibers in computational models. A particular class of such methods is known as Laplace-Dirichlet-Rule-Based-Methods (LDRBMs) since they rely on the solution of Laplace problems. In this work we provide a unified framework, based on LDRBMs, for generating full heart muscle fibers. First, we review existing ventricular LDRBMs providing a communal mathematical description and introducing also some modeling improvements with respect to the existing literature. We then carry out a systematic comparison of LDRBMs based on meaningful biomarkers produced by numerical EP simulations. Next we propose, for the first time, a LDRBM to be used for generating atrial fibers. The new method, tested both on idealized and realistic atrial models, can be applied to any arbitrary geometries. Finally, we present numerical results obtained in a realistic whole heart where fibers are included for all the four chambers using the discussed LDRBMs.

MSC:

74L15 Biomechanical solid mechanics
74F15 Electromagnetic effects in solid mechanics
92C30 Physiology (general)

Software:

vmtk; deal.ii
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Streeter, D. D.; Spotnitz, H. M.; Patel, D. P.; Ross, J.; Sonnenblick, E. H., Fiber orientation in the canine left ventricle during diastole and systole, Circ. Res., 24, 3, 339-347 (1969)
[2] Roberts, D. E.; Hersh, L. T.; Scher, A. M., Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog, Circ. Res., 44, 5, 701-712 (1979)
[3] Punske, B. B.; Taccardi, B.; Steadman, B.; Ershler, P. R.; England, A.; Valencik, M. L.; McDonald, J. A.; Litwin, S. E., Effect of fiber orientation on propagation: electrical mapping of genetically altered mouse hearts, J. Electrocardiol., 38, 4, 40-44 (2005)
[4] Papadacci, C.; Finel, V.; Provost, J.; Villemain, O.; Bruneval, P.; Gennisson, J.; Tanter, M.; Fink, M.; Pernot, M., Imaging the dynamics of cardiac fiber orientation in vivo using 3D ultrasound backscatter tensor imaging, Sci. Rep., 7, 1, 1-9 (2017)
[5] Gil, D.; Aris, R.; Borras, A.; Ramírez, E.; Sebastian, R.; Vázquez, M., Influence of fiber connectivity in simulations of cardiac biomechanics, Int. J. Comput. Assist. Radiol. Surg., 14, 1, 63-72 (2019)
[6] Eriksson, T. S.E.; Prassl, A. J.; Plank, G.; Holzapfel, G. A., Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction, Math. Mech. Solids, 18, 6, 592-606 (2013) · Zbl 1528.92014
[7] Palit, A.; Bhudia, S. K.; Arvanitis, T. N.; Turley, G. A.; Williams, M. A., Computational modelling of left-ventricular diastolic mechanics: Effect of fibre orientation and right-ventricle topology, J. Biomech., 48, 4, 604-612 (2015)
[8] Guan, D.; Yao, J.; Luo, X.; Gao, H., Effect of myofibre architecture on ventricular pump function by using a neonatal porcine heart model: from DT-MRI to rule-based methods, Roy. Soc. Open Sci., 7, 4, Article 191655 pp. (2020)
[9] Beyar, R.; Sideman, S., A computer study of the left ventricular performance based on fiber structure, sarcomere dynamics, and transmural electrical propagation velocity, Circ. Res., 55, 3, 358-375 (1984)
[10] Bayer, J. D.; Beaumont, J.; Krol, A., Laplace-Dirichlet energy field specification for deformable models. an FEM approach to active contour fitting, Ann. Biomed. Eng., 33, 9, 1175-1186 (2005)
[11] Hsu, E. W.; Muzikant, A. L.; Matulevicius, S. A.; Penland, R. C.; Henriquez, C. S., Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation, Amer. J. Physiol.-Heart Circ. Physiol., 274, 5, H1627-H1634 (1998)
[12] Helm, P. A.; Tseng, H. J.; Younes, L.; McVeigh, E. R.; Winslow, R. L., Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure, Magn. Res. Med.: Off. J. Int. Soc. Magn. Reson. Med., 54, 4, 850-859 (2005)
[13] Pashakhanloo, F.; Herzka, D. A.; Ashikaga, H.; Mori, S.; Gai, N.; Bluemke, D. A.; Trayanova, N.; McVeigh, E. R., Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging, Circ.: Arrhythm. Electrophysiol., 9, Article e004133 pp. (2016)
[14] Scollan, D. F.; Holmes, A.; Zhang, J.; Winslow, R. L., Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging, Ann. Biomed. Eng., 28, 8, 934-944 (2000)
[15] Wu, E. X.; Wu, Y.; Tang, H.; Wang, J.; Yang, J.; Ng, M. C.; Yang, E. S.; Chan, C. W.; Zhu, S.; Lau, C., Study of myocardial fiber pathway using magnetic resonance diffusion tensor imaging, Magn. Reson. Imaging, 25, 7, 1048-1057 (2007)
[16] Peyrat, J. M.; Sermesant, M.; Pennec, X.; Delingette, H.; Xu, C.; McVeigh, E. R.; Ayache, N., A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts, IEEE Trans. Med. Imaging, 26, 11, 1500-1514 (2007)
[17] Lombaert, H.; Peyrat, J.; Croisille, P.; Rapacchi, S.; Fanton, L.; Cheriet, F.; Clarysse, P.; Magnin, I.; Delingette, H.; Ayache, N., Human atlas of the cardiac fiber architecture: study on a healthy population, IEEE Trans. Med. Imaging, 31, 7, 1436-1447 (2012)
[18] Toussaint, N.; Stoeck, C. T.; Schaeffter, T.; Kozerke, S.; Sermesant, M.; Batchelor, P. G., In vivo human cardiac fibre architecture estimation using shape-based diffusion tensor processing, Med. Image Anal., 17, 8, 1243-1255 (2013)
[19] Alexander, A. L.; Hasan, K. M.; Lazar, M.; Tsuruda, J. S.; Parker, D. L., Analysis of partial volume effects in diffusion-tensor MRI, Magn. Reson. Med.:Off. J. Int. Soc. Magn. Reson. Med., 45, 5, 770-780 (2001)
[20] Nagler, A.; Bertoglio, C.; Gee, M.; Wall, W., Personalization of cardiac fiber orientations from image data using the unscented Kalman filter, (International Conference on Functional Imaging and Modeling of the Heart (2013)), 132-140
[21] Hoermann, J. M.; Pfaller, M. R.; Avena, L.; Bertoglio, C.; Wall, W. A., Automatic mapping of atrial fiber orientations for patient-specific modeling of cardiac electromechanics using image registration, Int. J. Numer. Methods Biomed. Eng., 35, 6, Article e3190 pp. (2019)
[22] Bayer, J. D.; Blake, R. C.; Plank, G.; Trayanova, N., A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models, Ann. Biomed. Eng., 40, 10, 2243-2254 (2012)
[23] Wong, J.; Kuhl, E., Generating fibre orientation maps in human heart models using Poisson interpolation, Comput. Methods Biomech. Biomed. Eng., 17, 11, 1217-1226 (2014)
[24] Rossi, S.; Lassila, T.; Ruiz-Baier, R.; Sequeira, A.; Quarteroni, A., Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics, Eur. J. Mech. A Solids, 48, 129-142 (2014) · Zbl 1406.74503
[25] Doste, R.; Soto-Iglesias, D.; Bernardino, G.; Alcaine, A.; Sebastian, R.; Giffard-Roisin, S.; Sermesant, M.; Berruezo, A.; Sanchez-Quintana, D.; Camara, O., A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts, Int. J. Numer. Methods Biomed. Eng., 35, 4, Article e3185 pp. (2019)
[26] Krueger, M. W.; Schmidt, V.; Tobón, C.; Weber, F. M.; Lorenz, C.; Keller, D. U.J.; Barschdorf, H.; Burdumy, M.; Neher, P.; Plank, G., Modeling atrial fiber orientation in patient-specific geometries: a semi-automatic rule-based approach, (International Conference on Functional Imaging and Modeling of the Heart (2011)), 223-232
[27] Tobón, C.; Ruiz-Villa, C. A.; Heidenreich, E.; Romero, L.; Hornero, F.; Saiz, J., A three-dimensional human atrial model with fiber orientation. electrograms and arrhythmic activation patterns relationship, PLoS One, 8 (2013)
[28] Fastl, T. E.; Tobon-Gomez, C.; Crozier, A.; Whitaker, J.; Rajani, R.; McCarthy, K. P.; Sanchez-Quintana, D.; Ho, S. Y.; O’Neill, M. D.; Plank, G., Personalized computational modeling of left atrial geometry and transmural myofiber architecture, Med. Image Anal. (2018)
[29] Roney, C. H.; Bendikas, R.; Pashakhanloo, F.; Corrado, C.; Vigmond, E. J.; McVeigh, E. R.; Trayanova, N. A.; Niederer, S. A., Constructing a human atrial fibre atlas, Ann. Biomed. Eng. (2020)
[30] Potse, M.; Dubé, B.; Richer, J.; Vinet, A.; Gulrajani, R. M., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Trans. Biomed. Eng., 53, 12, 2425-2435 (2006)
[31] Nielsen, P.; Le Grice, I. J.; Smaill, B. H.; Hunter, P. J., Mathematical model of geometry and fibrous structure of the heart, Amer. J. Physiol.-Heart Circ. Physiol., 260, 4, H1365-H1378 (1991)
[32] Bishop, M. J.; Plank, G.; Burton, R. A.B.; Schneider, J. E.; Gavaghan, D. J.; Grau, V.; Kohl, P., Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function, Amer. J. Physiol.-Heart Circ. Physiol., 298, 2, H699-H718 (2009)
[33] Ferrer, A.; Sebastián, R.; Sánchez-Quintana, D.; Rodríguez, J. F.; Godoy, E. J.; Martínez, L.; Saiz, J., Detailed anatomical and electrophysiological models of human atria and torso for the simulation of atrial activation, PLoS One, 10, 11, Article e0141573 pp. (2015)
[34] Plank, G.; Prassl, A.; Hofer, E.; Trayanova, N., Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions, Biophys. J., 94, 1904-1915 (2008)
[35] Greenbaum, R. A.; Ho, S. Y.; Gibson, D. G.; Becker, A. E.; Anderson, R. H., Left ventricular fibre architecture in man, Heart, 45, 3, 248-263 (1981)
[36] Sanchez-Quintana, D.; Garcia-Martinez, V.; Hurle, J. M., Myocardial fiber architecture in the human heart, Cells Tissues Organs, 138, 4, 352-358 (1990)
[37] Anderson, R. H.; Smerup, M.; Sanchez-Quintana, D.; Loukas, M.; Lunkenheimer, P. P., The three-dimensional arrangement of the myocytes in the ventricular walls, Clin. Anat.:Off. J. Amer. Assoc. Clin. Anat. British Assoc. Clin. Anat., 22, 1, 64-76 (2009)
[38] Kocica, M. J.; Corno, A. F.; Carreras-Costa, F.; Ballester-Rodes, M.; Moghbel, M. C.; Cueva, C. N.C.; Lackovic, V.; Kanjuh, V. I.; Torrent-Guasp, F., The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium, Eur. J. Cardio-Thorac. Surg., 29, S21-S40 (2006)
[39] Boettler, P.; Claus, P.; Herbots, L.; McLaughlin, M.; D’hooge, J.; Bijnens, B.; Ho, S. Y.; Kececioglu, D.; Sutherland, G. R., New aspects of the ventricular septum and its function: an echocardiographic study, Heart, 91, 10, 1343-1348 (2005)
[40] Krueger, M. W.; Rhode, K.; Weber, F. M.; Keller, D.; Caulfield, D.; Seemann, G.; Knowles, B.; Razavi, R.; Dössel, O., Patient-specific volumetric atrial models with electrophysiological components: a comparison of simulations and measurements, Biomed. Tech./Biomed. Eng., 55 (2010)
[41] Labarthe, S.; Coudiere, Y.; Henry, J.; Cochet, H., A semi-automatic method to construct atrial fibre structures: A tool for atrial simulations, (Computing in Cardiology (2012)), 881-884
[42] Rocher, S.; López, A.; Ferrer, A.; Martínez, L.; Sánchez, D.; Saiz, J., A highly-detailed 3D model of the human atria, (World Congress on Medical Physics and Biomedical Engineering 2018 (2019), Springer), 649-653
[43] Harrild, D. M.; Henriquez, C. S., A computer model of normal conduction in the human atria, Circ. Res., 87, e25-e36 (2000)
[44] Vigmond, E. J.; Ruckdeschel, R.; Trayanova, N., Reentry in a morphologically realistic atrial model, J. Cardiovasc. Electrophys., 12, 1046-1054 (2001)
[45] Jacquemet, V.; Virag, N.; Ihara, Z.; Dang, L.; Blanc, O.; Zozor, S.; Vesin, J.; Kappenberger, L.; Henriquez, C., Study of unipolar electrogram morphology in a computer model of atrial fibrillation, J. Cardiovasc. Electrophys., 14, S172-S179 (2003)
[46] Seemann, G.; Höper, C.; Sachse, F. B.; Dössel, O.; Holden, A. V.; Zhang, H., Heterogeneous three-dimensional anatomical and electrophysiological model of human atria, Phil. Trans. R. Soc. A, 364, 1465-1481 (2006)
[47] Fastl, T. E.; Tobon-Gomez, C.; Crozier, W. A.; Whitaker, J.; Rajani, R.; McCarthy, K. P.; Sanchez-Quintana, D.; Ho, S. Y.; O’Neill, M. D.; Plank, G., Personalized modeling pipeline for left atrial electromechanics, (2016 Computing in Cardiology Conference (CinC) (2016)), 225-228
[48] Trayanova, N. A., Whole-heart modeling: applications to cardiac electrophysiology and electromechanics, Circ. Res., 108, 113-128 (2011)
[49] Baillargeon, B.; Rebelo, N.; Fox, D. D.; Taylor, R. L.; Kuhl, E., The living heart project: a robust and integrative simulator for human heart function, Eur. J. Mech.-A/Solids, 48, 38-47 (2014) · Zbl 1406.74491
[50] Fritz, T.; Wieners, C.; Seemann, G.; Steen, H.; Dössel, Olaf, Simulation of the contraction of the ventricles in a human heart model including atria and pericardium, Biomech. Model. Mechanobiol., 13, 3, 627-641 (2014)
[51] Augustin, C. M.; Neic, A.; Liebmann, M.; Prassl, A. J.; Niederer, S. A.; Haase, G.; Plank, G., Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation, J. Comput. Phys., 305, 622-646 (2016) · Zbl 1349.92032
[52] Quarteroni, A.; Lassila, T.; Rossi, S.; Ruiz-Baier, R., Integrated heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function, Comput. Methods Appl. Mech. Engrg., 314, 345-407 (2017) · Zbl 1439.74208
[53] Santiago, A.; Aguado-Sierra, J.; Zavala-Aké, M.; Doste-Beltran, R.; Gómez, S.; Arís, R.; Cajas, J. C.; Casoni, E.; Vázquez, M., Fully coupled fluid-electro-mechanical model of the human heart for supercomputers, Int. J. Numer. Methods Biomed. Eng., 34, 12, Article e3140 pp. (2018)
[54] Land, S.; Niederer, S. A., Influence of atrial contraction dynamics on cardiac function, Int. J. Numer. Methods Biomed. Eng., 34, 3, Article e2931 pp. (2018)
[55] Pfaller, M. R.; Hörmann, J. M.; Weigl, M.; Nagler, A.; Chabiniok, R.; Bertoglio, C.; Wall, W. A., The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling, Biomech. Model. Mechanobiol., 18, 2, 503-529 (2019)
[56] Strocchi, M.; Gsell, M.; Augustin, C. M.; Razeghi, O.; Roney, C. H.; Prassl, A. J.; Vigmond, E. J.; Behar, J. M.; Gould, J. S.; Rinaldi, C. A., Simulating ventricular systolic motion in a four-chamber heart model with spatially varying robin boundary conditions to model the effect of the pericardium, J. Biomech., 101, Article 109645 pp. (2020)
[57] Sánchez-Quintana, D.; López-Mínguez, J. R.; Macías, Y.; Cabrera, J. A.; Saremi, F., Left atrial anatomy relevant to catheter ablation, Cardiol. Res. Pract., 2014 (2014)
[58] Shoemake, K., Animating rotation with quaternion curves, (ACM SIGGRAPH Computer Graphics, Vol. 19 (1985)), 245-254
[59] Kuipers, J. B., Quaternions and Rotation Sequences, Vol. 66 (1999), Princeton University Press · Zbl 1053.70001
[60] Ho, S. Y.; Nihoyannopoulos, P., Anatomy, echocardiography, and normal right ventricular dimensions, Heart, 92, i2-i13 (2006)
[61] Sánchez-Quintana, D.; Doblado-Calatrava, M.; Cabrera, J. A.; Macías, Y.; Saremi, F., Anatomical basis for the cardiac interventional electrophysiologist, BioMed Res. Int. (2015)
[62] Bayer, J.; Prassl, A. J.; Pashaei, A.; Gomez, J. F.; Frontera, A.; Neic, A.; Plank, G.; Vigmond, E. J., Universal ventricular coordinates: A generic framework for describing position within the heart and transferring data, Med. Image Anal., 45, 83-93 (2018)
[63] Dössel, O.; Krueger, M. W.; Weber, F. M.; Wilhelms, M.; Seemann, G., Computational modeling of the human atrial anatomy and electrophysiology, Med. Biol. Eng. Comput., 50, 773-799 (2012)
[64] Boineau, J. P.; Canavan, T. E.; Schuessler, R. B.; Cain, M. E.; Corr, P. B.; Cox, J. L., Demonstration of a widely distributed atrial pacemaker complex in the human heart, Circulation, 77, 1221-1237 (1988)
[65] Betts, T. R.; Ho, S. Y.; Sánchez-Quintana, D.; Roberts, P. R.; Anderson, R. H.; Morgan, J. M., Three-dimensional mapping of right atrial activation during sinus rhythm and its relationship to endocardial architecture, J. Cardiovasc. Electrophysiol., 13, 1152-1159 (2002)
[66] De Ponti, R.; Ho, S. Y.; Salerno-Uriarte, J. A.; Tritto, M.; Spadacini, G., Electroanatomic analysis of sinus impulse propagation in normal human atria, J. Cardiovasc. Electrophysiol., 13, 1-10 (2002)
[67] Krueger, M. W., Personalized multi-scale modeling of the atria: heterogeneities, fiber architecture, hemodialysis and ablation therapy, Vol. 19 (2013), KIT Scientific Publishing
[68] Maesen, B.; Zeemering, S.; Afonso, C.; Eckstein, J.; Burton, R.; Van Hunnik, A.; Stuckey, D. J.; Tyler, D.; Maessen, J.; Grau, V., Rearrangement of atrial bundle architecture and consequent changes in anisotropy of conduction constitute the 3-dimensional substrate for atrial fibrillation, Circ.: Arrhyt. Electrophysiol., 6, 967-975 (2013)
[69] Papez, J. W., Heart musculature of the atria, Amer. J. Anat., 27, 255-285 (1920)
[70] Thomas, C. E., The muscular architecture of the atria of hog and dog hearts, Amer. J. Anat., 104, 207-236 (1959)
[71] Ho, S. Y.; Anderson, R. H.; Sánchez-Quintana, D., Atrial structure and fibres: morphologic bases of atrial conduction, Cardiovasc. Res., 54, 325-336 (2002)
[72] Ho, S. Y.; Sánchez-Quintana, D., The importance of atrial structure and fibers, Clin. Anat.:Off. J. Amer. Assoc. Clin. Anat. British Assoc. Clin. Anat., 22, 52-63 (2009)
[73] Ho, S. Y.; Cabrera, J. A.; Sanchez-Quintana, D., Left atrial anatomy revisited, Circ.:Arrhyt. Electrophysiol., 5, 220-228 (2012)
[74] Aslanidi, O. V.; Nikolaidou, T.; Zhao, J.; Smaill, B. H.; Gilbert, S.; Holden, A. V.; Lowe, T.; Withers, P. J.; Stephenson, R. S.; Jarvis, J. C., Application of micro-computed tomography with iodine staining to cardiac imaging, segmentation, and computational model development, IEEE Trans. Med. Imaging, 32, 8-17 (2012)
[75] D. Sánchez-Quintana, D.; Pizarro, G.; López-Mínguez, J. R.; Ho, S. Y.; Cabrera, J. A., Standardized review of atrial anatomy for cardiac electrophysiologists, J. Cardiovasc. Transl. Res., 6, 124-144 (2013)
[76] Hansen, B. J.; Zhao, J.; Fedorov, V. V., Fibrosis and atrial fibrillation: computerized and optical mapping: a view into the human atria at submillimeter resolution, JACC: Clin. Electrophysiol., 3, 531-546 (2017)
[77] Zhao, J.; Hansen, B. J.; Csepe, T. A.; Lim, P.; Wang, Y.; Williams, M.; Mohler, P. J.; Janssen, P. M.L.; Weiss, R.; Hummel, J. D., Integration of high-resolution optical mapping and 3-dimensional micro-computed tomographic imaging to resolve the structural basis of atrial conduction in the human heart, Circ.: Arrhyt. Electrophysiol., 8, 1514-1517 (2015)
[78] Zhao, J.; Hansen, B. J.; Wang, Y.; Csepe, T. A.; Sul, L. V.; Tang, A.; Yuan, Y.; Li, N.; Bratasz, A.; Powell, K. A., Three-dimensional integrated functional, structural, and computational mapping to define the structural “fingerprints” of heart-specific atrial fibrillation drivers in human heart ex vivo, J. Amer. Heart Assoc., 6, Article e005922 pp. (2017)
[79] Satriano, A.; Bellini, C.; Vigmond, E. J.; Di Martino, E. S., A feature-based morphing methodology for computationally modeled biological structures applied to left atrial fiber directions, J. Biomech. Eng., 135 (2013)
[80] McDowell, K. S.; Zahid, S.; Vadakkumpadan, F.; Blauer, J.; MacLeod, R. S.; Trayanova, N., Virtual electrophysiological study of atrial fibrillation in fibrotic remodeling, PLoS One, 10 (2015)
[81] Roney, C. H.; Pashaei, A.; Meo, M.; Dubois, R.; Boyle, P. M.; Trayanova, N.; Cochet, H.; Niederer, S. A.; Vigmond, E. J., Universal atrial coordinates applied to visualisation, registration and construction of patient specific meshes, Med. Image Anal., 55, 65-75 (2019)
[82] Franzone, P. C.; Pavarino, L. F.; Scacchi, S., Mathematical Cardiac Electrophysiology, Vol. 13 (2014), Springer · Zbl 1318.92002
[83] Vigmond, E. J.; Hughes, M.; Plank, G.; Leon, L. J., Computational tools for modeling electrical activity in cardiac tissue, J. Electrocardiol., 36, 69-74 (2003)
[84] Plank, G.; Zhou, L.; Greenstein, J. L.; Cortassa, S.; Winslow, R. L.; O’Rourke, B.; Trayanova, N. A., From mitochondrial ion channels to arrhythmias in the heart: computational techniques to bridge the spatio-temporal scales, Phil. Trans. R. Soc. A, 366, 3381-3409 (2008)
[85] Trayanova, N. A.; Boyle, P. M.; Arevalo, H. J.; Zahid, S., Exploring susceptibility to atrial and ventricular arrhythmias resulting from remodeling of the passive electrical properties in the heart: a simulation approach, Front. Physiol., 5, 435 (2014)
[86] Niederer, S. A.; Lumens, J.; Trayanova, N. A., Computational models in cardiology, Nat. Rev. Cardiol., 16, 100-111 (2019)
[87] Courtemanche, M.; Ramirez, R. J.; Nattel, S., Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, Amer. J. Physiol.-Heart Circ. Physiol., 275, H301-H321 (1998)
[88] Ten Tusscher, K. H.W. J.; Panfilov, A. V., Alternans and spiral breakup in a human ventricular tissue model, Amer. J. Physiol.-Heart Circ. Physiol., 291, H1088-H1100 (2006)
[89] Vigmond, E. J.; Dos Santos, R. W.; Prassl, A. J.; Deo, M.; Plank, G., Solvers for the cardiac bidomain equations, Prog. Biophys. Mol. Biol., 96, 3-18 (2008)
[90] Hurtado, D. E.; Rojas, G., Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy, Comput. Mech., 61, 4, 485-497 (2018) · Zbl 1446.35222
[91] Jilberto, J.; Hurtado, D. E., Semi-implicit non-conforming finite-element schemes for cardiac electrophysiology: a framework for mesh-coarsening heart simulations, Front. Physiol., 9, 1513 (2018)
[92] Arevalo, H. J.; Vadakkumpadan, F.; Guallar, E.; Jebb, A.; Malamas, P.; Wu, K. C.; Trayanova, N. A., Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models, Nature Commun., 7, 1-8 (2016)
[93] Krishnamoorthi, S.; Sarkar, M.; Klug, W. S., Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology, Int. J. Numer. Methods Biomed. Eng., 29, 1243-1266 (2013)
[94] Inc., Zygote Media Group, Zygote Solid 3d Heart Generation II Developement ReportTechnical report (2014)
[95] Sermesant, M.; Rhode, K.; Sanchez-Ortiz, G. I.; Camara, O.; Andriantsimiavona, R.; Hegde, S.; Rueckert, D.; Lambiase, P.; Bucknall, C.; Rosenthal, E., Simulation of cardiac pathologies using an electromechanical biventricular model and XMR interventional imaging, Med. Image Anal., 9, 5, 467-480 (2005)
[96] Pegolotti, L.; Dedè, L.; Quarteroni, A., Isogeometric analysis of the electrophysiology in the human heart: numerical simulation of the bidomain equations on the atria, Comput. Methods Appl. Mech. Engrg., 343, 52-73 (2019) · Zbl 1440.78006
[97] Fedele, M., Polygonal Surface Processing and Mesh Generation Tools for Numerical Simulations of the Complete Cardiac FunctionMOX Report 32 (2019), Politecnico di Milano
[98] Antiga, L.; Steinman, D. A., The vascular modeling toolkit (2008), URL: http://www.vmtk.org
[99] Quarteroni, A.; Dedè, L.; Manzoni, A.; Vergara, C., Mathematical Modelling of the Human Cardiovascular System: Data, Numerical Approximation, Clinical Applications (2019), Cambridge University Press · Zbl 1411.92003
[100] Roth, B. J., Action potential propagation in a thick strand of cardiac muscle, Circ. Res., 68, 162-173 (1991)
[101] Niederer, S. A.; Kerfoot, E.; Benson, A. P.; Bernabeu, M. O.; Bernus, O.; Bradley, C.; Cherry, E. M.; Clayton, R.; Fenton, F. H.; Garny, A., Verification of cardiac tissue electrophysiology simulators using an n-version benchmark, Phil. Trans. R. Soc. A, 369, 4331-4351 (2011)
[102] Costa, C. M.; Hoetzl, E.; Rocha, B. M.; Prassl, A. J.; Plank, G., Automatic parameterization strategy for cardiac electrophysiology simulations, (Computing in Cardiology (2013)), 373-376
[103] Augustin, C. M.; Fastl, T. E.; Neic, A.; Bellini, C.; Whitaker, J.; Rajani, R.; O’Neill, M. D.; Bishop, M. J.; Plank, G.; Niederer, S. A., The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium, Biomech. Model. Mechanobiol., 1-20 (2019)
[104] Monaci, S.; Nordsletten, D.; Aslanidi, O., Computational modelling of electro-mechanical coupling in the atria and its changes during atrial fibrillation, (International Workshop on Statistical Atlases and Computational Models of the Heart (2018)), 103-113
[105] Arndt, D.; Bangerth, W.; Clevenger, T. C.; Davydov, D.; Fehling, M.; Garcia-Sanchez, D.; Harper, G.; Heister, T.; Heltai, L.; Kronbichler, M.; Kynch, R. M.; Maier, M.; Pelteret, J.-P.; Turcksin, B.; Wells, D., The library, version 9.1, J. Numer. Math. (2019) · Zbl 1435.65010
[106] Razumov, A. A.; Ushenin, K. S.; Butova, K. A.; Solovyova, O. E., The study of the influence of heart ventricular wall thickness on pseudo-ECG, Russ. J. Numer. Anal. Math. Modelling, 33, 301-313 (2018) · Zbl 1405.92139
[107] Göktepe, S.; Wong, J.; Kuhl, E., Atrial and ventricular fibrillation: computational simulation of spiral waves in cardiac tissue, Arch. Appl. Mech., 80, 5, 569-580 (2010) · Zbl 1271.74319
[108] Göktepe, S.; Kuhl, E., Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem, Comput. Mech., 45, 2-3, 227-243 (2010) · Zbl 1183.78031
[109] Ahmad Bakir, A.; Al Abed, A.; Stevens, M. C.; Lovell, N. H.; Dokos, S., A multiphysics biventricular cardiac model: Simulations with a left-ventricular assist device, Front. Physiol., 9, 1259 (2018)
[110] Mercier, J. C.; DiSessa, T. G.; Jarmakani, J. M.; Nakanishi, T.; Hiraishi, S.; Isabel-Jones, J.; Friedman, W. F., Two-dimensional echocardiographic assessment of left ventricular volumes and ejection fraction in children, Circulation, 65, 962-969 (1982)
[111] Lunkenheimer, P. P.; Niederer, P.; Sanchez-Quintana, D.; Murillo, M.; Smerup, M., Models of ventricular structure and function reviewed for clinical cardiologists, J. Cardiovasc. Transl. Res., 6, 176-186 (2013)
[112] Stephenson, R. S.; Agger, P.; Lunkenheimer, P. P.; Zhao, J.; Smerup, M.; Niederer, P.; Anderson, R. H.; Jarvis, J. C., The functional architecture of skeletal compared to cardiac musculature: Myocyte orientation, lamellar unit morphology, and the helical ventricular myocardial band, Clin. Anat., 29, 316-332 (2016)
[113] Patelli, A. S.; Dedè, L.; Lassila, T.; Bartezzaghi, A.; Quarteroni, A., Isogeometric approximation of cardiac electrophysiology models on surfaces: An accuracy study with application to the human left atrium, Comput. Methods Appl. Mech. Engrg., 317, 248-273 (2017) · Zbl 1439.76090
[114] Beinart, R.; Abbara, S.; Blum, A.; Ferencik, M.; Heist, K.; Ruskin, J.; Mansour, M., Left atrial wall thickness variability measured by CT scans in patients undergoing pulmonary vein isolation, J. Cardiovasc. Electrophysiol., 22, 11, 1232-1236 (2011)
[115] Sakamoto, S. I.; Nitta, T.; Ishii, Y.; Miyagi, Y.; Ohmori, H.; Shimizu, K., Interatrial electrical connections: the precise location and preferential conduction, J. Cardiovasc. Electrophysiol., 16, 10, 1077-1086 (2005)
[116] Anderson, R. H.; Ho, S. Y.; Becker, A. E., Anatomy of the human atrioventricular junctions revisited, Anat. Rec.:Off. Pub. Amer. Assoc. Anat., 260, 1, 81-91 (2000)
[117] Vergara, C.; Palamara, S.; Catanzariti, D.; Nobile, F.; Faggiano, E.; Pangrazzi, C.; Centonze, M.; Maines, M.; Quarteroni, A.; Vergara, G., Patient-specific generation of the purkinje network driven by clinical measurements of a normal propagation, Med. Biol. Eng. Comput., 52, 10, 813 (2014)
[118] Pashaei, A.; Romero, D.; Sebastian, R.; Camara, O.; Frangi, A. F., Fast multiscale modeling of cardiac electrophysiology including purkinje system, IEEE Trans. Biomed. Eng., 58, 10, 2956-2960 (2011)
[119] Durrer, D.; Van Dam, R. Th.; Freud, G. E.; Janse, M. J.; Meijler, F. L.; Arzbaecher, R. C., Total excitation of the isolated human heart, Circulation, 41, 6, 899-912 (1970)
[120] Collin, A.; Gerbeau, J.; Hocini, M.; Haïssaguerre, M.; Chapelle, D., Surface-based electrophysiology modeling and assessment of physiological simulations in atria, (International Conference on Functional Imaging and Modeling of the Heart (2013)), 352-359
[121] Lemery, R.; Birnie, D.; Tang, A. S.L.; Green, M.; Gollob, M.; Hendry, M.; Lau, E., Normal atrial activation and voltage during sinus rhythm in the human heart: an endocardial and epicardial mapping study in patients with a history of atrial fibrillation, J. Cardiovasc. Electrophysiol., 18, 4, 402-408 (2007)
[122] Dimitri, H.; Ng, M.; Brooks, A. G.; Kuklik, P.; Stiles, M. K.; Lau, D. H.; Antic, N.; Thornton, A.; Saint, D. A.; McEvoy, D., Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation, Heart Rhythm, 9, 321-327 (2012)
[123] Lopez-Perez, A.; Sebastian, R.; Ferrero, J. M., Three-dimensional cardiac computational modelling: methods, features and applications, Biomed. Eng. Online, 14, 35 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.