×

Face recognition from a single image per person: a survey. (English) Zbl 1096.68732

Summary: One of the main challenges faced by the current face recognition techniques lies in the difficulties of collecting samples. Fewer samples per person mean less laborious effort for collecting them, lower cost for storing and processing them. Unfortunately, many reported face recognition techniques rely heavily on the size and representative of training set, and most of them will suffer serious performance drop or even fail to work if only one training sample per person is available to the systems. This situation is called “one sample per person” problem: given a stored database of faces, the goal is to identify a person from the database later in time in any different and unpredictable poses, lighting, etc. from just one image. Such a task is very challenging for most current algorithms due to the extremely limited representative of training sample. Numerous techniques have been developed to attack this problem, and the purpose of this paper is to categorize and evaluate these algorithms. The prominent algorithms are described and critically analyzed. Relevant issues such as data collection, the influence of the small sample size, and system evaluation are discussed, and several promising directions for future research are also proposed in this paper.

MSC:

68T10 Pattern recognition, speech recognition
68U10 Computing methodologies for image processing

Software:

FRGC; CMU PIE; AR face; FERET
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] W. Zhao, R. Chellappa, P.J. Phillips, A. Rosenfeld, Face recognition: a literature survey, ACM Comput. Surv. December Issue (2003) 399-458.; W. Zhao, R. Chellappa, P.J. Phillips, A. Rosenfeld, Face recognition: a literature survey, ACM Comput. Surv. December Issue (2003) 399-458.
[2] Chellappa, R.; Wilson, C. L.; Sirohey, S., Human and machine recognition of faces: a survey, Proc. IEEE, 83, 5, 705-740 (1995)
[3] Daugman, J., Face and gesture recognition: overview, IEEE Trans. Pattern Anal. Mach. Intell., 19, 7, 675-676 (1997)
[4] Samal, A.; Iyengar, P. A., Automatic recognition and analysis of human faces and facial expressions: a survey, Pattern Recognition, 25, 1, 65-77 (1992)
[5] Valentin, D.; Abdi, H., Connectionist models of face processing: a survey, Pattern Recognition, 27, 9, 1209-1230 (1994)
[6] Yang, M. H.; Kriegman, D.; Ahuja, N., Detecting faces in images: a survey, IEEE Trans. Pattern Anal. Mach. Intell., 24, 1, 34-58 (2002)
[7] Pantic, M.; Rothkrantz, L. J.M., Automatic analysis of facial expressions: the state of the art, IEEE Trans. Pattern Anal. Mach. Intell., 22, 12, 1424-1445 (2000)
[8] Sirovich, L.; Kirby, M., Low-dimensional procedure for the characterization of human faces, J. Opt. Soc. Am. A, 4, 3, 519-524 (1987)
[9] Turk, M.; Pentland, A., Eigenfaces for recognition, J. Cognitive Neurosci., 3, 1, 71-86 (1991)
[10] Belhumeur, P.; Hespanha, J.; Kriegman, D., Eigenfaces vs. fisherfaces: recognition using class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intell., 19, 7, 711-720 (1997)
[11] Swets, D. L.; Weng, J., Using discriminant eigenfeatures for image retrieval, IEEE Trans. Pattern Anal. Mach. Intell., 18, 8, 831-836 (1996)
[12] Lu, J.; Plataniotis, K. N.; Venetsanopoulos, A. N., Face recognition using kernel direct discriminant analysis algorithms, IEEE Trans. Neural Networks, 14, 1, 117-126 (2003)
[13] W. Zhao, R. Chellappa, P.J. Phillips, Subspace linear discriminant analysis for face recognition, Technical Report CAR-TR-914, Center for Automation Research, University of Maryland, 1999.; W. Zhao, R. Chellappa, P.J. Phillips, Subspace linear discriminant analysis for face recognition, Technical Report CAR-TR-914, Center for Automation Research, University of Maryland, 1999.
[14] Beymer, D.; Poggio, T., Face recognition from one example view, Science, 272, 5250 (1996)
[15] Vetter, T., Synthesis of novel views from a single face image, Int. J. Comput. Vision, 28, 2, 102-116 (1998)
[16] Niyogi, P.; Girosi, F.; Poggio, T., Incorporating prior information in machine learning by creating virtual examples, Proc. IEEE, 86, 11, 2196-2209 (1998)
[17] Chen, S. C.; Liu, J.; Zhou, Z.-H., Making FLDA applicable to face recognition with one sample per person, Pattern Recognition, 37, 7, 1553-1555 (2004)
[18] J. Huang, P.C. Yuen, W.S. Chen, J.H. Lai, Component-based LDA method for face recognition with one training sample, AMFG (2003) 120-126.; J. Huang, P.C. Yuen, W.S. Chen, J.H. Lai, Component-based LDA method for face recognition with one training sample, AMFG (2003) 120-126.
[19] Martinez, A. M., Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class, IEEE Trans. Pattern Anal. Mach. Intell., 25, 6, 748-763 (2002)
[20] A.M. Martinez, Recognizing expression variant faces from a single sample image per class, Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), 2003, pp. 353-358.; A.M. Martinez, Recognizing expression variant faces from a single sample image per class, Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), 2003, pp. 353-358.
[21] Martinez, A. M., Matching expression variant faces, Vision Res., 43, 9, 1047-1060 (2003)
[22] Lawrence, S.; Giles, C. L.; Tsoi, A.; Back, A., Face recognition: a convolutional neural-network approach, IEEE Trans. Neural Networks, 8, 1, 98-113 (1997)
[23] Tan, X.; Chen, S. C.; Zhou, Z.-H.; Zhang, F., Recognizing partially occluded, expression variant faces from single training image per person with SOM and soft kNN ensemble, IEEE Trans. Neural Networks, 16, 4, 875-886 (2005)
[24] Brunelli, R.; Poggio, T., Face recognition: features versus templates, IEEE Trans. Pattern Anal. Mach. Intell., 15, 10, 1042-1062 (1993)
[25] A.K. Jain, B. Chandrasekaran, Dimensionality and sample size considerations in pattern recognition practice, in: P.R. Krishnaiah, L.N. Kanal (Eds.), Handbook of Statistics, vol. 2, 1982, pp. 835-855.; A.K. Jain, B. Chandrasekaran, Dimensionality and sample size considerations in pattern recognition practice, in: P.R. Krishnaiah, L.N. Kanal (Eds.), Handbook of Statistics, vol. 2, 1982, pp. 835-855. · Zbl 0511.62067
[26] Jain, A. K.; Chandrasekaran, B., Dimensionality and sample size considerations in pattern recognition practice, (Krishnaiah, P. R.; Kanal, L. N., Handbook of Statistics, vol. 2 (1987), North-Holland: North-Holland Amsterdam), 835-855 · Zbl 0511.62067
[27] Raudys, S. J.; Jain, A. K., Small sample size effects in statistical pattern recognition: recommendations for practitioners, IEEE Trans. Pattern Anal. Mach. Intell., 13, 3, 252-264 (1991)
[28] R.P.W. Duin, Small sample size generalization, in: G. Borgefors (Eds.), SCIA’95, Proceeding of the Ninth Scandinavian Conference on Image Analysis, vol. 2, Uppsala, Sweden, 6-9 June 1995, pp. 957-964.; R.P.W. Duin, Small sample size generalization, in: G. Borgefors (Eds.), SCIA’95, Proceeding of the Ninth Scandinavian Conference on Image Analysis, vol. 2, Uppsala, Sweden, 6-9 June 1995, pp. 957-964.
[29] X. Wang, X. Tang, Unified subspace analysis for face recognition, Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, pp. 679-686.; X. Wang, X. Tang, Unified subspace analysis for face recognition, Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, pp. 679-686.
[30] F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in: F.L. Sarasota (Ed.), Proceedings of Second IEEE Workshop on Applications of Computer Vision, December 1994, pp. 138-142.; F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in: F.L. Sarasota (Ed.), Proceedings of Second IEEE Workshop on Applications of Computer Vision, December 1994, pp. 138-142.
[31] Moghaddam, B.; Pentland, A., Probabilistic visual learning for object representation, IEEE Trans. Pattern Anal. Mach. Intell., 19, 7, 696-710 (1997)
[32] Phillipls, P. J., Support vector machines applied to face recognition, Adv. Neural Inform. Process. Syst., 11, 03, 809 (1998)
[33] Li, S. Z.; Lu, J., Face recognition using the nearest feature line method, IEEE Trans. Neural Networks, 10, 2, 439-443 (1999)
[34] Liu, C.; Wechsler, H., Evolutionary pursuit and its application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell., 22, 6, 570-582 (2000)
[35] He, X.; Yan, X.; Hu, Y., Face recognition using Laplacianfaces, IEEE Trans. Pattern Anal. Mach. Intell., 27, 3, 328-340 (2005)
[36] Martinez, A.; Kak, A. C., PCA versus LDA, IEEE Trans. Pattern Anal. Mach. Intell., 23, 2, 228-233 (2001)
[37] Wu, J.; Zhou, Z.-H., Face recognition with one training image per person, Pattern Recognition Lett., 23, 14, 1711-1719 (2002) · Zbl 1007.68920
[38] Yang, J.; Zhang, D.; Frangi, A. F.; Yang, J., Two-dimensional PCA: a new approach to appearance-based face representation and recognition, IEEE Trans. Pattern Anal. Mach. Intell., 26, 1, 131-137 (2004)
[39] H.C. Jung, B.W. Hwang, S.W. Lee, Authenticating corrupted face image based on noise model, Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, 272pp.; H.C. Jung, B.W. Hwang, S.W. Lee, Authenticating corrupted face image based on noise model, Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, 272pp.
[40] Wang, J.; Plataniotis, K. N.; Venetsanopoulos, A. N., Selecting discriminant eigenfaces for face recognition, Pattern Recognition Lett., 26, 10, 1470-1482 (2005)
[41] F. Frade, De la Torre, R. Gross, S. Baker, V. Kumar, Representational oriented component analysis (ROCA) for face recognition with one sample image per training class, in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, June 2005, pp. 266-273.; F. Frade, De la Torre, R. Gross, S. Baker, V. Kumar, Representational oriented component analysis (ROCA) for face recognition with one sample image per training class, in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, June 2005, pp. 266-273.
[42] Chen, S. C.; Zhang, D. Q.; Zhou, Z.-H., Enhanced (PC)2A for face recognition with one training image per person, Pattern Recognition Lett., 25, 10, 1173-1181 (2004)
[43] Gao, Y.; Qi, Y., Robust visual similarity retrieval in single model face databases, Pattern Recognition, 38, 7, 1009-1020 (2005)
[44] B.S. Manjunath, R. Chellappa, C.V.D. Malsburg, A feature based approach to face recognition, in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 1992, pp. 373-378.; B.S. Manjunath, R. Chellappa, C.V.D. Malsburg, A feature based approach to face recognition, in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 1992, pp. 373-378.
[45] Lades, M.; Vorbruggen, J.; Buhmann, J.; Lange, J.; Malsburg von der; Wurtz, R., Distortion invariant object recognition in the dynamic link architecture, IEEE Trans. Comput., 42, 3, 300-311 (1993)
[46] Wiskott, L.; Fellous, R.; Kruger, N.; von Malsburg, C., Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Anal. Mach. Intell., 19, 7, 775-779 (July 1997)
[47] B. Kepenekci, F.B. Tek, G. Bozdagi Akar, Occluded face recognition based on Gabor wavelets, ICIP 2002, September 2002, Rochester, NY, MP-P3.10.; B. Kepenekci, F.B. Tek, G. Bozdagi Akar, Occluded face recognition based on Gabor wavelets, ICIP 2002, September 2002, Rochester, NY, MP-P3.10.
[48] H.-S. Le, H. Li, Recognizing frontal face images using hidden Markov models with one training image per person, Proceedings of the 17th International Conference on Pattern Recognition (ICPR04), vol. 1, 2004, pp. 318-321.; H.-S. Le, H. Li, Recognizing frontal face images using hidden Markov models with one training image per person, Proceedings of the 17th International Conference on Pattern Recognition (ICPR04), vol. 1, 2004, pp. 318-321.
[49] Lam, K.-M.; Yan, H., An analytic-to-holistic approach for face recognition based on a single frontal view, IEEE Trans. Pattern Anal. Mach. Intell., 20, 7, 673-686 (1998)
[50] T. Ahonen, A. Hadid, M. Pietikäinen, Face recognition with local binary patterns, Computer Vision, ECCV 2004 Proceedings, Lecture Notes in Computer Science, vol. 3021, Springer, Berlin, 2004, pp. 469-481.; T. Ahonen, A. Hadid, M. Pietikäinen, Face recognition with local binary patterns, Computer Vision, ECCV 2004 Proceedings, Lecture Notes in Computer Science, vol. 3021, Springer, Berlin, 2004, pp. 469-481. · Zbl 1098.68717
[51] H.E. Komleh, V. Chandran, S. Sridharan, Robustness to expression variations in fractal-based face recognition, Proceedings of ISSPA-01, vol. 1, Kuala Lumpur, Malaysia, 13-16 August 2001, pp. 359-362.; H.E. Komleh, V. Chandran, S. Sridharan, Robustness to expression variations in fractal-based face recognition, Proceedings of ISSPA-01, vol. 1, Kuala Lumpur, Malaysia, 13-16 August 2001, pp. 359-362.
[52] O’Toole, A. J.; Abdi, H., Low-dimensional representation of faces in higher dimensions of the face space, Opt. Soc. Am., 10, 3, 405-411 (1993)
[53] C. Kotropoulos, I. Pitas, Rule-based face detection in frontal views, Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol. 4, 1997, pp. 2537-2540.; C. Kotropoulos, I. Pitas, Rule-based face detection in frontal views, Proceedings of the International Conference on Acoustics, Speech and Signal Processing, vol. 4, 1997, pp. 2537-2540.
[54] Phillips, P. J.; Moon, H.; Rizvi, S.; Rauss, P., The FERET evaluation methodology for face recognition algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 22, 10, 1090-1103 (2000)
[55] Zhang, D. Q.; Chen, S. C.; Zhou, Z.-H., A new face recognition method based on SVD perturbation for single example image per person, Appl. Math. Comp., 163, 2, 895-907 (2005) · Zbl 1060.65568
[56] Golub, G. H.; Loan, C. F., Van Matrix Computations (1983), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, Maryland · Zbl 0559.65011
[57] Hong, Z., Algebraic feature extraction of image for recognition, Pattern Recognition, 24, 211-219 (1991)
[58] Phillips, J. P.; Newton, E. M., Meta-analysis of face recognition algorithms, (Fifth IEEE International Conference on Automatic Face and Gesture Recognition. Fifth IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC (May 2002)), 235-241
[59] Yang, Q.; Ding, X., Symmetrical PAC in face recognition, ICIP02, V, 2, 97-100 (2002)
[60] S. Gutta, H. Wechsler, Face recognition using asymmetric faces, in: D. Zhang, A.K. Jain (Eds.), ICBA2004, Lecture Notes in Computer Science, vol. 3072, 2004, pp. 162-168.; S. Gutta, H. Wechsler, Face recognition using asymmetric faces, in: D. Zhang, A.K. Jain (Eds.), ICBA2004, Lecture Notes in Computer Science, vol. 3072, 2004, pp. 162-168.
[61] T. Poggio, T. Vetter, Recognition and structure from one 2D model view: observations on prototypes, object classes and symmetries, Artificial Intelligence Laboratory, MIT, Cambridge, MA, A.I. Memo No. 1347, 1992.; T. Poggio, T. Vetter, Recognition and structure from one 2D model view: observations on prototypes, object classes and symmetries, Artificial Intelligence Laboratory, MIT, Cambridge, MA, A.I. Memo No. 1347, 1992.
[62] Beymer, D.; Poggio, T., Image representations for visual learning, Science, 272, 5270, 1905-1909 (1996)
[63] Hwang, B. W.; Lee, S. W., Reconstruction of partially damaged face images based on a morphable face model, IEEE Trans. Pattern Anal. Mach. Intell., 25, 3, 365-372 (2003)
[64] Cootes, T. F.; Edwards, G. J.; Taylor, C. J., Active appearance models, IEEE Trans. Pattern Anal. Mach. Intell., 23, 6, 681-685 (2001)
[65] A.S. Geoghiades, P.N. Belhumeur, D.J. Kriegman, Illumination-based image synthesis: creating novel images of human faces under differing pose and lighting, in: Proceedings, Workshop on Multi-View Modeling and Analysis of Visual Scenes, 1999, pp. 47-54.; A.S. Geoghiades, P.N. Belhumeur, D.J. Kriegman, Illumination-based image synthesis: creating novel images of human faces under differing pose and lighting, in: Proceedings, Workshop on Multi-View Modeling and Analysis of Visual Scenes, 1999, pp. 47-54.
[66] Geoghiades, A. S.; Belhumeur, P. N.; Kriegman, D. J., From few to many: illumination cone models for face recognition under variable lighting and pose, IEEE Trans. Pattern Anal. Mach. Intell., 23, 643-660 (2001)
[67] A.S. Geoghiades, D.J. Kriegman, P.N. Belhumeur, Illumination cones for recognition under variable lighting: faces, in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, 1998, pp. 52-58.; A.S. Geoghiades, D.J. Kriegman, P.N. Belhumeur, Illumination cones for recognition under variable lighting: faces, in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, 1998, pp. 52-58.
[68] Shan, S. G.; Gao, W.; Zhao, D., Face identification based on face-specific subspace, Int. J. Image Syst. Technol., 13, 1, 23-32 (2003), (Special issue on face processing, analysis and synthesis)
[69] G. Wen, S. Shan, et al., Virtual face image generation for illumination and pose insensitive face recognition, Proceedings of ICASSP2003, vol. IV, Hong Kong, 2003, pp. 776-779.; G. Wen, S. Shan, et al., Virtual face image generation for illumination and pose insensitive face recognition, Proceedings of ICASSP2003, vol. IV, Hong Kong, 2003, pp. 776-779.
[70] M. Donahue, D. Geiger, R. Hummel, T. Liu, Sparse representations for image decompositions with occlusions, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 1996, pp. 7-12.; M. Donahue, D. Geiger, R. Hummel, T. Liu, Sparse representations for image decompositions with occlusions, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 1996, pp. 7-12.
[71] Jacobs, D. W.; Weinshall, D.; Gdalyahu, Y., Classification with non-metric distances: image retrieval and class representation, IEEE Trans. Pattern Anal. Mach. Intell., 22, 6, 583-600 (2000)
[72] M.D. Kelly, Visual identification of people by computer, Technical Report AI-130, Stanford AI Project, Stanford, CA, 1970.; M.D. Kelly, Visual identification of people by computer, Technical Report AI-130, Stanford AI Project, Stanford, CA, 1970.
[73] T. Kanade, Picture processing by computer complex and recognition of human faces, Technical Report, Department of Information Science, Kyoto University, 1973.; T. Kanade, Picture processing by computer complex and recognition of human faces, Technical Report, Department of Information Science, Kyoto University, 1973.
[74] Goldstein, A. J.; Harmon, L. D.; Lesk, A. B., Identification of human faces, Proc. IEEE, 59, 5, 748-760 (1971)
[75] Y. Kaya, K. Kobayashi, A basic study on human face recognition, in: S. Watanabe (Ed.), Frontiers of Pattern Recognition, 1972, pp. 265-289.; Y. Kaya, K. Kobayashi, A basic study on human face recognition, in: S. Watanabe (Ed.), Frontiers of Pattern Recognition, 1972, pp. 265-289.
[76] P.R. Villeala, J. uan Humberto Sossa Azuela, Improving pattern recognition using several feature vectors, Lecture Notes in Computer Science, Springer, Heidelberg, 2002.; P.R. Villeala, J. uan Humberto Sossa Azuela, Improving pattern recognition using several feature vectors, Lecture Notes in Computer Science, Springer, Heidelberg, 2002. · Zbl 1077.68807
[77] Kuncheva, L. I.; Whitaker, C. J., Feature subsets for classifier combination: an enumerative experiment, (Kittler, J.; Roli, F., Lecture Notes in Computer Science, vol. 2096 (2001), Springer: Springer Berlin), 228-237 · Zbl 0980.68680
[78] Kittler, J.; Hatef, M.; Duin, R. P.W.; Matas, J., On combining classifiers, IEEE Trans. Pattern Anal. Mach. Intell., 20, 3, 226-239 (1998)
[79] Rowley, H. A.; Baluja, S.; Kanade, T., Neural network-based face detection, IEEE Trans. Pattern Anal. Mach. Intell., 20, 1, 23-38 (1998)
[80] Wu, C.; Liu, C., Automatic eyeglasses removal from face image, IEEE Trans. Pattern Anal. Mach. Intell., 26, 3, 322-336 (2004)
[81] Lanitis, A.; Taylor, C. J.; Cootes, T. F., Automatic face identification system using flexible appearance models, Image Vis. Comput., 13, 5, 393-401 (1995)
[82] Jain, A. K.; Zhong, Y.; Lakshmanan, S., Object matching using deformable templates, IEEE Trans. Pattern Anal. Mach. Intell., 22, 1, 4-37 (2000)
[83] Lee, T. S., Image representation using 2-d Gabor wavelets, IEEE Trans. Pattern Anal. Mach. Intell., 18, 10, 959-971 (1996)
[84] Zhang, J.; Yan, Y.; Lades, M., Face recognition: eigenface, elastic matching and neural nets, Proc. IEEE, 85, 9, 1423-1435 (1997)
[85] A.M. Martínez, R. Benavente, The AR face database, CVC Technical Report No. 24, June 1998.; A.M. Martínez, R. Benavente, The AR face database, CVC Technical Report No. 24, June 1998.
[86] Samaria, F., Face segmentation for identification using hidden Markov models, (British Machine Vision Conference (1993), BMVA Press), 399-408
[87] T. Kölsch, D. Keysers, H. Ney, R. Paredes, Enhancements for local feature based image classification, in: International Conference on Pattern Recognition (ICPR 2004), vol. I, Cambridge, UK, August 2004, pp. 248-251.; T. Kölsch, D. Keysers, H. Ney, R. Paredes, Enhancements for local feature based image classification, in: International Conference on Pattern Recognition (ICPR 2004), vol. I, Cambridge, UK, August 2004, pp. 248-251.
[88] Kim, Y. K.; Ra, J. B., Adaptive learning method in self organizing map for edge preserving vector quantization, IEEE Trans. Neural Networks, 6, 1, 278-280 (1995)
[89] Kohonen, T., Self-Organizing Map (1997), Springer: Springer Berlin
[90] T. Kanade, A. Yamada, Multi-subregion based probabilistic approach toward pose-invariant face recognition, in: Proceeding of IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), July 16-20, Kobe, Japan, 2003, pp. 954-959.; T. Kanade, A. Yamada, Multi-subregion based probabilistic approach toward pose-invariant face recognition, in: Proceeding of IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), July 16-20, Kobe, Japan, 2003, pp. 954-959.
[91] T. Sim, S. Baker, M. Bsat, The CMU pose illumination and expression (PIE) database, in: Proceedings of the Fifth International Conference on Automatic Face and Gesture Recognition, 2002.; T. Sim, S. Baker, M. Bsat, The CMU pose illumination and expression (PIE) database, in: Proceedings of the Fifth International Conference on Automatic Face and Gesture Recognition, 2002.
[92] Craw, I.; Costen, N., How should Faces for automatic recognition?, IEEE Trans. Pattern Anal. Mach. Intell., 21, 8, 725-736 (1999)
[93] J. Huang, B. Heisele, V. Blanz, Component-based face recognition with 3D morphable models, in: Proceedings, International Conference on Audio- and Video-Based Person Authentication.; J. Huang, B. Heisele, V. Blanz, Component-based face recognition with 3D morphable models, in: Proceedings, International Conference on Audio- and Video-Based Person Authentication. · Zbl 1050.68756
[94] B. Heisele, T. Serre, M. Pontil, T. Poggio, Component-based face detection, in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, pp. 657-662.; B. Heisele, T. Serre, M. Pontil, T. Poggio, Component-based face detection, in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, pp. 657-662.
[95] Penev, P.; Atick, J., Local feature analysis: a general statistical theory for object representation, Netw.: Comput. Neural Syst., 7, 477-500 (1996) · Zbl 0898.92039
[96] Ojala, T.; Pietikäinen, M.; Mäenpää, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal. Mach. Intell., 24, 971-987 (2002)
[97] Shepherd, J. W.; Davidies, G. M.; Ellis, H. D., Studies of cue saliency, (Davies, G. M.; Ellis, H. D.; Shepherd, J. W., Perceiving and Remembering aces (1981), Academic Press: Academic Press London, UK)
[98] A. Pentland, B. Moghaddam, T. Starner, View-based and modular eigenspaces for face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, Seattle, WA, 1994, pp. 84-91.; A. Pentland, B. Moghaddam, T. Starner, View-based and modular eigenspaces for face recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, Seattle, WA, 1994, pp. 84-91.
[99] D. Wettschereck, D.W. Aha, T. Mohri, A review and comparative evaluation of feature weighting methods for lazy learning algorithms, Technical Report AIC-95-012, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, 1995.; D. Wettschereck, D.W. Aha, T. Mohri, A review and comparative evaluation of feature weighting methods for lazy learning algorithms, Technical Report AIC-95-012, Naval Research Laboratory, Navy Center for Applied Research in Artificial Intelligence, Washington, DC, 1995.
[100] X. Tan, S.C. Chen, Z.-H. Zhou, F. Zhang, Feature selection for high dimensional face image using self-organizing maps, in: Proceedings of the Eighth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’05), Hanoi, Vietnam, Lecture Notes in Artificial Intelligence, vol. 3518, 2005, pp. 500-504.; X. Tan, S.C. Chen, Z.-H. Zhou, F. Zhang, Feature selection for high dimensional face image using self-organizing maps, in: Proceedings of the Eighth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’05), Hanoi, Vietnam, Lecture Notes in Artificial Intelligence, vol. 3518, 2005, pp. 500-504.
[101] X. Geng, Z.-H. Zhou, Face recognition based on selective ensemble of multiple eigenspaces, in: Proceedings of the International Symposium on Computer Vision, Object Tracking and Recognition, Beijing, China, August 2004 (in Chinese).; X. Geng, Z.-H. Zhou, Face recognition based on selective ensemble of multiple eigenspaces, in: Proceedings of the International Symposium on Computer Vision, Object Tracking and Recognition, Beijing, China, August 2004 (in Chinese).
[102] Zhou, Z.-H.; Wu, J.; Tang, W., Ensembling neural networks: many could be better than all, Artif. Intell., 137, 1-2, 239-263 (2000) · Zbl 0995.68077
[103] Hallinan, P. W., Two-and Three-dimensional Patterns of the Face (1999), A K Peters, Ltd.: A K Peters, Ltd. Natick, MA · Zbl 0930.68140
[104] Costen, N. P.; Cootes, T. F.; Taylor, C. J., Compensating for ensemble-specific effects when building facial models, Image Vision Comput., 20, 673-682 (2002)
[105] Lanitis, A.; Taylor, C. J.; Cootes, T. F., Automatic face identification system using flexible appearance models, Image Vision Comput., 13, 393-401 (1995)
[106] P. Jonathon, P.J. Flynn, T. Scruggs, K.W. Bowyer, Overview of the face recognition grand challenge, IEEE Conference on Computer Vision and Pattern Recognition, vol. I, San Diego, June 2005, pp. 947-954.; P. Jonathon, P.J. Flynn, T. Scruggs, K.W. Bowyer, Overview of the face recognition grand challenge, IEEE Conference on Computer Vision and Pattern Recognition, vol. I, San Diego, June 2005, pp. 947-954.
[107] Ting Shan, Automatic multiple-view person identification system under unconstrained environment using one sample per person, Ph.D. Confirmation Seminar in the School of Information Technology & Electrical Engineering (ITEE), University of Queensland, August 2005.; Ting Shan, Automatic multiple-view person identification system under unconstrained environment using one sample per person, Ph.D. Confirmation Seminar in the School of Information Technology & Electrical Engineering (ITEE), University of Queensland, August 2005.
[108] T. Choudhury, B. Clarkson, T. Jebara, A. Pentland, Multimodal person recognition using unconstrained audio and video, International Conference an Audio and Video-based Biometric Authentication, Washington, DC, 1999, pp. 176-181.; T. Choudhury, B. Clarkson, T. Jebara, A. Pentland, Multimodal person recognition using unconstrained audio and video, International Conference an Audio and Video-based Biometric Authentication, Washington, DC, 1999, pp. 176-181.
[109] Zhang, L.; Samaras, D., Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics, IEEE Trans. Pattern Anal. Mach. Intell., 28, 3, 351-363 (2006)
[110] Thrun, S.; Pratt, L., Learning to learn: introduction and overview, (Thrun, S.; Pratt, L., Learning to Learn (1998), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht)
[111] E. Miller, N. Matsakis, P. Viola, Learning from one example through shared densities on transforms, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2000, pp. 464-471.; E. Miller, N. Matsakis, P. Viola, Learning from one example through shared densities on transforms, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, 2000, pp. 464-471.
[112] Vapnik, V., Statistical Learning Theory (1998), Wiley: Wiley New York · Zbl 0935.62007
[113] R. Gross, J. Shi, J. Cohn, Quo Vadis face recognition? Third Workshop on Empirical Evaluation Methods in Computer Vision, December 2001, pp. 119-132.; R. Gross, J. Shi, J. Cohn, Quo Vadis face recognition? Third Workshop on Empirical Evaluation Methods in Computer Vision, December 2001, pp. 119-132.
[114] Moses, Y.; Ullman, S.; Edelman, S., Generalization to novel images in upright and inverted faces, Perception, 25, 443-462 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.