×

The split-SV model. (English) Zbl 1466.62198

Summary: A modification of one of the most popular stochastic model in describing financial indexes dynamics is introduced. For describing a nonlinear behavior of volatility, a threshold noise indicator in the autoregressive time series of stochastic volatility is used. Toward this end, the model named the Split-SV model is introduced and its basic stochastic properties are investigated. Furthermore, the Empirical Characteristic Function (ECF) method is used for obtaining the parameter estimations of the model and a numerical simulation of the obtained estimates is given as well. Finally, the Split-SV model is applied for fitting the empirical data: the daily returns of the exchange rates of GBP and USD per euro.

MSC:

62-08 Computational methods for problems pertaining to statistics
62P05 Applications of statistics to actuarial sciences and financial mathematics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balakrishnan, N.; Brito, M. R.; Quiroz, A. J., On the goodness-of-fit procedure for normality based on the empirical characteristic function for ranked set sampling data, Metrika, 76, 161-177, (2013) · Zbl 1256.62024
[2] Barndorff-Nielsen, O. E.; Shepard, N., Econometric analysis of realized volatility and its use in estimating stochastic volatility models, J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 2, 253-280, (2001) · Zbl 1059.62107
[3] Barndorff-Nielsen, O. E.; Shepard, N., Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 2, 167-241, (2001) · Zbl 0983.60028
[4] Barndorff-Nielsen, O. E.; Shephard, N., Integrate OU processes and non-Gaussian OU-based stochastic volatility models, Scand. J. Statist., 30, 277-295, (2003) · Zbl 1051.60048
[5] Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., Shengqiao, L., 2013. FNN: fast nearest neighbor search algorithms and applications. R package version 1.1. http://CRAN.R-project.org/package=FNN.
[6] Cvetković, A. S.; Milovanović, G. V., The Mathematica package “orthogonal polynomials”, Facta Univ. Ser. Math. Inform., 19, 17-36, (2004) · Zbl 1081.33001
[7] Daníelsson, J., Stochastic volatility in asset prices: estimation with simulated maximum likelihood, J. Econometrics, 61, 375-400, (1994) · Zbl 0825.62953
[8] Durhan, G. B., SV mixture models with application to S&P 500 index, J. Financ. Econ., 85, 3, 822-856, (2007)
[9] Feuerverger, A., An efficiency result for the empirical characteristic function in stationary time-series models, Canad. J. Statist., 18, 155-161, (1990) · Zbl 0703.62096
[10] Feuerverger, A.; Mureika, R., The empirical characteristic function and its applications, Ann. Statist., 5, 1, 88-97, (1977) · Zbl 0364.62051
[11] Gross, L., 2013. Tests for normality. R package version 1.0-2. http://CRAN.R-project.org/package=nortest.
[12] Harvey, A.; Ruiz, E.; Shephard, N., Multivariate stochastic variance model, Rev. Econom. Stud., 61, 247-264, (1994) · Zbl 0805.90026
[13] Huang, C.; Yang, L.; Wang, Y., Convergence of a convolution-filtering-based algorithm for empirical mode decomposition, Adv. Adapt. Data Anal., 1, 4, 561-571, (2009)
[14] Huang, S. J.; Yu, J., An efficient method for maximum likelihood estimation of a stochastic volatility model, Stat. Interface, 1, 289-296, (2008) · Zbl 1230.91194
[15] Jacquier, E.; Polson, N. G.; Rossi, P. E., Bayesian analysis of stochastic volatility models, J. Bus. Econom. Statist., 12, 4, 371-417, (1994)
[16] Jiang, G. J.; Knight, J. L., Estimation of continuous-time processes via the empirical characteristic function, J. Bus. Econom. Statist., 20, 2, 198-212, (2002)
[17] Kastner, G., 2013. Stochvol: efficient Bayesian inference for stochastic volatility (SV) models, R package version 0.6-0. http://CRAN.R-project.org/package=stochvol.
[18] Kastner, G.; Frühwirth-Schnatter, S., Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models, Comput. Statist. Data Anal., 76, 408-423, (2014)
[19] Kim, S.; Shephard, N.; Chib, S., Stochastic volatility: likelihood inference and comparison with ARCH models, Rev. Econom. Stud., 65, 3, 361-393, (1998) · Zbl 0910.90067
[20] Kleppe, T. S.; Skaug, H. J., Fitting general stochastic volatility models using Laplace accelerated equential importance sampling, Comput. Statist. Data Anal., 56, 3105-3119, (2012) · Zbl 1254.91599
[21] Knight, J.L., Satchell, S.E., 1996. Estimation of stationary stochastic processes via the empirical characteristic function. Manuscript, Department of Economics, University of Western Ontario.
[22] Knight, J. L.; Satchell, S. E., The cumulant generating function estimation method, Econometric Theory, 13, 170-184, (1997)
[23] Knight, J. L.; Satchell, S. E.; Yu, J., Estimation of the stochastic volatility model by te empirical characteristic function method, Aust. N. Z. J. Stat., 44, 3, 319-335, (2002) · Zbl 1021.62089
[24] Knight, J. L.; Yu, J., Empirical characteristic function in time series estimation, Econometric Theory, 18, 691-721, (2002) · Zbl 1109.62337
[25] Kotchoni, R., Applications of the characteristic function-based continuum GMM in finance, Comput. Statist. Data Anal., 56, 3599-3622, (2012) · Zbl 1254.91754
[26] Kotchoni, R., The indirect continuous-GMM estimation, Comput. Statist. Data Anal., 76, 464-488, (2014)
[27] Meintanis, S. G.; Swanepoel, J.; Allison, J., The probability weighted characteristic function and goodness-of-fit testing, J. Statist. Plann. Inference, (2013)
[28] Milovanović, G. V.; Cvetković, A. S., Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type, Math. Balkanica, 26, 169-184, (2012) · Zbl 1272.33013
[29] Nieto-Reyes, A.; Cuesta-Albertos, J.; Gamboa, F., A random-projection based test of gaussianity for stationary processes, Comput. Statist. Data Anal., 75, 124-141, (2014)
[30] Olofsson, M., Ericson, T., Forchheimer, R., 2004. Linear filters. In: Telecomunication Methods. Linköpings University, Linköping.
[31] Parzen, E., On estimation of a probability density function and mode, Ann. Math. Statist., 33, 1065-1076, (1962) · Zbl 0116.11302
[32] Popović, B.Č., Stojanović, V.S., 2011. The distribution of split-SV(1) model. In: Proceeding of the 2th International Conference MIT 2011, pp. 335-340.
[33] Rabinowitz, Ph.; Richter, N., Perfectly symmetric two-dimensional integration formulas with minimal number of points, Math. Comp., 23, 765-779, (1969) · Zbl 0208.18702
[34] Raknerud, A.; Skare, Ø., Indirect inference methods for stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck processes, Comput. Statist. Data Anal., 56, 3260-3275, (2012) · Zbl 1255.62322
[35] Ruiz, E., Quasi-maximum likelihood estimation of stochastic volatility models, J. Econometrics, 63, 1, 289-306, (1994) · Zbl 0825.62949
[36] Shephard, N., Statistical aspects of ARCH and stochastic volatility, (Time Series Models in Econometrics, Finance and Other Fields, (1996), Chapman and Hall London) · Zbl 1075.91629
[37] Shirota, S.; Takayuki, H.; Yasuhiro, O., Realized stochastic volatility with leverage and long memory, Comput. Statist. Data Anal., 76, 618-641, (2014)
[38] Singleton, K., Estimation of affine pricing models using the empirical characteristic function, J. Econometrics, 102, 111-141, (2001) · Zbl 0973.62096
[39] So, M.; Li, W., A threshold stochastic volatility model, J. Forecast., 21, 473-500, (2002)
[40] Stojanović, V. S.; Popović, B.Č., Estimation in real data set by split-ARCH model, Filomat, 21, 2, 133-152, (2007) · Zbl 1164.62056
[41] Stojanović, V. S.; Popović, B.Č.; Popović, P. M., The split-BREAK model, Braz. J. Probab. Stat., 25, 1, 44-63, (2011) · Zbl 1298.62158
[42] Stojanović, V. S.; Popović, B.Č.; Popović, P. M., Stochastic analysis of GSB process, Publ. Inst. Math., 95, 109, 149-159, (2014) · Zbl 1474.62318
[43] Taufer, E.; Leonenko, N., Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes, J. Statist. Plann. Inference, 139, 3050-3063, (2009) · Zbl 1168.62074
[44] Taufer, E.; Leonenko, N.; Bee, M., Characteristic function estimation of Ornstein-Uhlenbeck-based stochastic volatility models, Comput. Statist. Data Anal., 55, 2525-2539, (2011) · Zbl 1464.62170
[45] Taylor, S. J., Modelling financial time series, (1986), John Wiley & Sons Chichester · Zbl 1130.91345
[46] Tsionas, E. G., Maximum likelihood estimation of stochastic frontier models by the Fourier transform, J. Econometrics, 170, 234-248, (2012) · Zbl 1443.62510
[47] Tsiotas, G., On generalised asymmetric stochastic volatility models, Comput. Statist. Data Anal., 56, 151-172, (2012) · Zbl 1241.91146
[48] Venter, J. H.; de Jongh, P. J., Extended stochastic volatility model incorporating realized measures, Comput. Statist. Data Anal., 76, 687-707, (2014)
[49] Wang, J.; Chan, J.; Choy, B., Stochastic volatility models with leverage and heavy-tailed distributions: a Bayesian approach using scale mixtures, Comput. Statist. Data Anal., 55, 1, 852-862, (2011) · Zbl 1247.91152
[50] Yu, J., Empirical characteristic function in time series estimation and a test statistic in financial modelling, (1998), The University of Western Ontario, (Ph.D. thesis)
[51] Yu, J., Empirical characteristic function estimation and its applications, Econometric Rev., 23, 2, 93-123, (2004) · Zbl 1123.62030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.