×

Development of a fast evaluation tool for rotating detonation combustors. (English) Zbl 1480.74257

Summary: Although rotating detonation engines may lead to improvements in the cycle thermal efficiency, their overall optimization is currently constrained by the need to perform time-consuming three-dimensional Navier-Stokes simulations of the combustor. Thus, there is a critical need to establish fast models to calculate the time-dependent temperature and pressure at the combustor outlet for further engine analysis and turbine integration. This manuscript describes a fast 2D simulation code of a rotating detonation combustor. This numerical methodology uses a 1D chemical kinetics solver, to reproduce the change of properties across the detonation wave front. The post-detonation flow is then resolved using a method of characteristics, which allows the prediction of pressure and temperature gain across the combustor. The main flow pattern, including the detonation front features, the shock wave angle and the outlet properties were compared with the solution of a two-dimensional Unsteady Reynolds Averaged Navier-Stokes solver. This approach is subsequently used to predict the detonation height based on the entropy generation across the combustor.

MSC:

74P10 Optimization of other properties in solid mechanics
74F05 Thermal effects in solid mechanics
80A25 Combustion

Software:

Cantera; OpenFOAM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Durmusoglu, Y.; Ust, Y., Thermodynamic optimization of an irreversible regenerative closed Brayton cycle based on thermoeconomic performance criterion, Appl. Math. Modell., 38, 21, 5174-5186 (2014)
[2] Paxson, D. E., A simplified model for detonation based pressure-gain combustors, National Aeronautics and Space Administration (2010), Glenn Research Center
[3] Ibragimov, R. N., Multidimensional wave fronts propagation along the beams associated with thermodynamic model of a rotating detonation engine, Appl. Math. Modell., 40, 4, 2661-2673 (2016) · Zbl 1452.80018
[4] Kailasanath, K., Review of propulsion applications of detonation waves, AIAA J., 38, 9, 1698-1708 (2000)
[5] M.L. Coleman, Overview of pulse detonation propulsion technology, DTIC Document, (2001).; M.L. Coleman, Overview of pulse detonation propulsion technology, DTIC Document, (2001).
[6] Lu, F. K.; Braun, E. M., Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts, J. Propul. Power, 30, 5, 1125-1142 (2014)
[7] Frolov, S.; Dubrovskii, A.; Ivanov, V., Three-dimensional numerical simulation of operation process in rotating detonation engine, Prog. Propul. Phys., 4, 467-488 (2013), EDP Sciences
[8] Tsuboi, N.; Watanabe, Y.; Kojima, T.; Hayashi, A. K., Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture, Proc. Combust. Inst., 35, 2, 2005-2013 (2015)
[9] C.A. Nordeen, D. Schwer, A. Corrigan, B. Cetegen, “Radial effects on rotating detonation engine swirl,” Proc. 51st AIAA/SAE/ASEE Joint Propulsion Conference (2015) p. 3781.; C.A. Nordeen, D. Schwer, A. Corrigan, B. Cetegen, “Radial effects on rotating detonation engine swirl,” Proc. 51st AIAA/SAE/ASEE Joint Propulsion Conference (2015) p. 3781.
[10] Braun, J.; Saracoglu, B. H.; Paniagua, G., Unsteady performance of rotating detonation engines with different exhaust nozzles, J. Propul. Power, 33, 1, 121-130 (2017)
[11] P.A. Cocks, A.T. Holley, B.A. Rankin, “High fidelity simulations of a non-premixed rotating detonation engine,” Proc. 54th AIAA Aerospace Sciences Meeting (2016) p. 0125.; P.A. Cocks, A.T. Holley, B.A. Rankin, “High fidelity simulations of a non-premixed rotating detonation engine,” Proc. 54th AIAA Aerospace Sciences Meeting (2016) p. 0125.
[12] T. Kaemming, M. Fotia, J. Hoke, F. Schauer, “Thermodynamic modeling of a rotating detonation engine through a reduced order approach,” Proc. 54th AIAA Aerospace Sciences Meeting (2017) p. 1405.; T. Kaemming, M. Fotia, J. Hoke, F. Schauer, “Thermodynamic modeling of a rotating detonation engine through a reduced order approach,” Proc. 54th AIAA Aerospace Sciences Meeting (2017) p. 1405.
[13] Sousa, J.; Paniagua, G.; Morata, E. C., Thermodynamic analysis of a gas turbine engine with a rotating detonation combustor, Appl. Energy, 195, 247-256 (2017)
[14] Sousa, J.; Paniagua, G.; Saavedra, J., Aerodynamic response of internal passages to pulsating inlet supersonic conditions, Comput. Fluids, 149, 31-40 (2017) · Zbl 1390.76222
[15] Browne, S.; Ziegler, J.; E., S. J., Numerical Solution Methods for Shock and Detonation Jump Conditions (2015), California Institute of Technology
[16] Goodwin, D. G.; Moffat, H. K.; Speth, R. L., Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2015)
[17] Sousa, J.; Paniagua, G., Entropy minimization design approach of supersonic internal passages, Entropy, 17, 8, 5593-5610 (2015)
[18] Schwer, D.; Kailasanath, K., Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels, Proc. Combust. Inst., 34, 2, 1991-1998 (2013)
[19] Bykovskii, F. A.; Zhdan, S. A.; Vedernikov, E. F., Continuous spin detonations, J. Propul. Power, 22, 6, 1204-1216 (2006)
[20] Lee, J. H., The Detonation Phenomenon (2008), Cambridge University Press: Cambridge University Press Cambridge
[21] Sichel, M.; Foster, J., The ground impulse generated by a plane fuel-air explosion with side relief, Acta Astronaut., 6, 3, 243-256 (1979)
[22] Mizener, A. R.; Lu, F. K., Low-order parametric analysis of a rotating detonation engine in rocket mode, J. Propul. Power (2017), article in advance
[23] Rankin, B. A.; Fotia, M. L.; Naples, A. G.; Stevens, C. A.; Hoke, J. L.; Kaemming, T. A.; Theuerkauf, S. W.; Schauer, F. R., Overview of performance, application, and analysis of rotating detonation engine technologies, J. Propul. Power, 33, 1, 131-143 (2017)
[24] B.A. Rankin, M. Fotia, D.E. Paxson, J. Hoke, F. Schauer, “Experimental and numerical evaluation of pressure gain combustion in a rotating detonation engine,” Proc. 53rd AIAA Aerospace Sciences Meeting (2015) p. 0877.; B.A. Rankin, M. Fotia, D.E. Paxson, J. Hoke, F. Schauer, “Experimental and numerical evaluation of pressure gain combustion in a rotating detonation engine,” Proc. 53rd AIAA Aerospace Sciences Meeting (2015) p. 0877.
[25] Fievisohn, R. T.; Yu, K. H., Steady-state analysis of rotating detonation engine flowfields with the method of characteristics, J. Propul. Power, 33, 1, 89-99 (2017)
[26] D. Paxson, “Numerical analysis of a rotating detonation engine in the relative reference frame,” Proc. 52nd AIAA Aerospace Sciences Meeting, AIAA Paper (2014).; D. Paxson, “Numerical analysis of a rotating detonation engine in the relative reference frame,” Proc. 52nd AIAA Aerospace Sciences Meeting, AIAA Paper (2014).
[27] OpenCFD, L., Openfoam: The Open source CFD Toolbox. User Guide (2011), OpenFOAM Foundation
[28] Ettner, F.; Vollmer, K. G.; Sattelmayer, T., Numerical simulation of the deflagration-to-detonation transition in inhomogeneous mixtures, J. Combust., 2014, 1-15 (2014)
[29] F. Ettner, ”http://sourceforge.net/projects/ddtfoam/; F. Ettner, ”http://sourceforge.net/projects/ddtfoam/
[30] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 1, 25-34 (1994) · Zbl 0811.76053
[31] D.A. Schwer, K. Kailasanath, “Numerical study of the effects of engine size on rotating detonation engines,” Proc. 49th AIAA Aerospace Sciences Meeting (2011) pp. 2011-2581.; D.A. Schwer, K. Kailasanath, “Numerical study of the effects of engine size on rotating detonation engines,” Proc. 49th AIAA Aerospace Sciences Meeting (2011) pp. 2011-2581.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.