Yang, Dan; Small, Dylan S. An R package and a study of methods for computing empirical likelihood. (English) Zbl 1431.62011 J. Stat. Comput. Simulation 83, No. 7, 1363-1372 (2013). Summary: Empirical likelihood (EL) is an important nonparametric statistical methodology. We develop a package in R called el.convex to implement EL for inference about a multivariate mean. This package contains five functions which use different optimization algorithms but meanwhile seek the same goal. These functions are based on the theory of convex optimization; they are Newton, Davidon-Fletcher-Powell, Broyden-Fletcher-Goldfarb-Shanno, conjugate gradient method, and damped Newton, respectively. We also compare them with the function el.test in the existing R package emplik, and discuss their relative advantages and disadvantages. Cited in 3 Documents MSC: 62-04 Software, source code, etc. for problems pertaining to statistics 62G05 Nonparametric estimation 62P20 Applications of statistics to economics Keywords:convex optimization; quasi-Newton method; instrumental variables; conjugate gradient method Software:emplik; R; el.convex PDF BibTeX XML Cite \textit{D. Yang} and \textit{D. S. Small}, J. Stat. Comput. Simulation 83, No. 7, 1363--1372 (2013; Zbl 1431.62011) Full Text: DOI OpenURL References: [1] Owen, A.1990. Empirical likelihood ratio confidence regions. Ann. Statist, 18: 90-120. (doi:10.1214/aos/1176347494) [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0712.62040 [2] Owen, A.2001. Empirical Likelihood, New York: Chapman & Hall/CRC. [Crossref], [Google Scholar] · Zbl 0989.62019 [3] Rheinboldt, W. C.1974. Methods for Solving Systems of Nonlinear Equations 14, Philadelphia, PA: SIAM. [Google Scholar] · Zbl 0325.65022 [4] Fletcher, R.1987. Practical Methods of Optimization, 2, New York: Wiley-Interscience. [Google Scholar] · Zbl 0905.65002 [5] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P.1992. Numerical Recipes in C, Cambridge: Cambridge University Press. [Google Scholar] · Zbl 0778.65003 [6] Angrist, J. D., Imbens, G. W. and Rubin, D. B.1996. Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc, 91: 444-455. (doi:10.1080/01621459.1996.10476902) [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0897.62130 [7] Sargan, J. D.1958. The estimation of economic relationships using instrumental variables. Econometrica, 26: 393-415. (doi:10.2307/1907619) [Crossref], [Web of Science ®], [Google Scholar] · Zbl 0101.36804 [8] Davidson, R. and MacKinnon, J.1993. Estimation and Inference in Econometrics, New York: Oxford University Press. [Google Scholar] · Zbl 1009.62596 [9] Small, D. S.2007. Sensitivity analysis for instrumental variables regression with overidentifying restrictions. J. Amer. Statist. Assoc, 102: 1049-1058. (doi:10.1198/016214507000000608) [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1333.62295 [10] Barmi, H. E.1995. Empirical likelihood ratio test for or against a set of inequality constraints. J. Statist. Plann. Inference, 55: 191-204. (doi:10.1016/0378-3758(95)00188-3) [Crossref], [Web of Science ®], [Google Scholar] · Zbl 1076.62511 [11] Ichino, A. and Winter-Ebmer, R.1999. Lower and upper bounds of returns to schooling: An exercise in IV estimation with different instruments. Eur. Econ. Rev, 43: 889-901. (doi:10.1016/S0014-2921(98)00102-0) [Crossref], [Web of Science ®], [Google Scholar] [12] Larsen, R. J. and Marx, M. L.1986. An Introduction to Mathematical Statistics and Its Applications, Englewood Cliffs, NJ: Prentice-Hall. [Google Scholar] · Zbl 0615.62002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.