Veron, Fabrice; Mieussens, Luc An Eulerian model for sea spray transport and evaporation. (English) Zbl 1460.76809 J. Fluid Mech. 897, Paper No. A6, 33 p. (2020). Summary: Reliable estimates of the fluxes of momentum, heat and moisture at the air-sea interface are essential for accurate long-term climate projections, as well as the prediction of short-term weather events such as tropical cyclones. In recent years, it has been suggested that these estimates need to incorporate an accurate description of the transport of sea spray within the atmospheric boundary layer and the drop-induced fluxes of momentum, heat and moisture, so that the resulting effects on atmospheric flow can be evaluated. In this paper we propose a model based on a theoretical and mathematical framework inspired from kinetic gas theory. This approach reconciles the Lagrangian nature of spray transport with the Eulerian description of the atmosphere. In turn, this enables a relatively straightforward inclusion of the spray fluxes and the resulting spray effects on the atmospheric flow. A comprehensive dimensional analysis has led us to identify the spray effects that are most likely to influence the speed, temperature and moisture of the airflow. We also provide an example application to illustrate the capabilities of the model in specific environmental conditions. Finally, suggestions for future work are offered. MSC: 76T10 Liquid-gas two-phase flows, bubbly flows 86A05 Hydrology, hydrography, oceanography 86A10 Meteorology and atmospheric physics Keywords:air/sea interactions; particle/fluid flow; drops Software:gini × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Adrian, R. J.1991Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech.23 (1), 261-304. [2] Andreas, E. L.1989 Thermal and size evolution of sea spray droplets. Tech. Rep. 89-11. CRREL. [3] Andreas, E. L.1990Time constants for the evolution of sea spray droplets. Tellus B42 (5), 481-497. [4] Andreas, E. L.1992Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res.97 (C7), 11429-11441. [5] Andreas, E. L.1998A new sea spray generation function for wind speeds up to 32 m s^-1. J. Phys. Oceanogr.28 (11), 2175-2184. [6] Andreas, E. L.2002A review of the sea spray generation function for the open ocean. In Atmosphere-Ocean Interactions (ed. Perrie, W. A.), vol. 1, p. 146. WIT Press. [7] Andreas, E. L.2004Spray stress revisited. J. Phys. Oceanogr.34 (6), 1429-1440. [8] Andreas, E. L. & Decosmo, J.1999Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. In Air-Sea Exchange: Physics, Chemistry and Dynamics (ed. Geernaert, G. L.), pp. 327-362. Kluwer. [9] Andreas, E. L., Edson, J. B., Monahan, E. C., Rouault, M. P. & Smith, S. D.1995The spray contribution to net evaporation from the sea: a review of recent progress. Boundary-Layer Meteorol.72 (1-2), 3-52. [10] Andreas, E. L. & Emanuel, K. A.2001Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci.58 (24), 3741-3751. [11] Andreas, E. L., Jones, K. F. & Fairall, C. W.2010Production velocity of sea spray droplets. J. Geophys. Res.115, C12065. [12] Andreas, E. L., Persson, P. O. G. & Hare, J. E.2008A bulk turbulent air-sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr.38 (7), 1581-1596. [13] Anis, A. & Moum, J. N.1995Surface wave-turbulence interactions: scaling 𝜖(z) near the sea surface. J. Phys. Oceanogr.25, 346-366. [14] Bao, J. W., Fairall, C. W., Michelson, S. A. & Bianco, L.2011Parameterizations of sea-spray impact on the air-sea momentum and heat fluxes. Mon. Wealth. Rev.139, 3781-3797. [15] Bao, J. W., Wilczak, J. M., Choi, J.-K. & Kantha, L. H.2000Numerical simulations of air-sea interaction under high wind conditions using a coupled model: a study of hurricane development. Mon. Wealth. Rev.128, 2190-2210. [16] Barenblatt, G. I., Chorin, A. J. & Prostokishin, V. M.2005A note concerning the lighthill ‘sandwich model’ of tropical cyclones. Proc. Natl Acad. Sci. USA102, 11148-11150. [17] Bell, M. M., Montgomery, M. T. & Emanuel, K. A.2012Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during cblast. J. Atmos. Sci.69 (3), 3197-3222. [18] Bianco, L., Bao, J.-W., Fairall, C. W. & Michelson, S. A.2011Impact of sea-spray on the atmospheric surface layer. Boundary-Layer Meteorol.140 (3), 361. [19] Blanchard, D. C.1989The size and height to which jet drops are ejected from bursting bubbles in sea water. J. Geophys. Res.94 (C8), 10999-11002. [20] Carruthers, D. J. & Choularton, T. W.1986The microstructure of hill cap clouds. Q. J. R. Meteorol. Soc.112 (471), 113-129. [21] Clift, R. & Gauvin, W. H.1970The motion of particles in turbulent gas-streams. Proc. Chemeca’701, 14. [22] Davies, C. N.1945Definitive equations for the fluid resistance of spheres. Proc. Phys. Soc. Lond.57 (Pt.4), 259-270. [23] Desjardins, O., Fox, R. O. & Villedieu, P.2008A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys.227 (4), 2514-2539. · Zbl 1261.76027 [24] Desvillettes, L., Golse, F. & Ricci, V.2008The mean-field limit for solid particles in a Navier-Stokes flow. J. Stat. Phys.131 (5), 941-967. · Zbl 1154.76018 [25] Domelevo, K. & Villedieu, P.2007A hierarchy of models for turbulent dispersed two-phase flows derived from a kinetic equation for the joint particle-gas pdf. Commun. Math. Sci.5 (2), 331-353. · Zbl 1141.35318 [26] Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C., Brown, O. B. & Saltzman, E. S.2004On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett.31 (18), L18306. [27] Drennan, W. M., Zhang, J. A., French, J. R., Mccormick, C. & Black, P. G.2007Turbulent fluxes in the hurricane boundary layer. Part II. Latent heat flux. J. Atmos. Sci.64 (4), 1103-1115. [28] Edson, J. B., Anquetin, S., Mestayer, P. G. & Sini, J. F.1996Spray droplet modeling. 2. An interactive Eulerian-Lagrangian model of evaporating spray droplets. J. Geophys. Res.101, 1279-1293. [29] Edson, J. B. & Fairall, C. W.1998Similarity relationships in the marine surface layer. J. Atmos. Sci.55, 2311-2328. [30] Edson, J. B. & Fairall, C. W.1994Spray droplet modeling. 1. Lagrangian model simulation of the turbulent transport of evaporating droplets. J. Geophys. Res.99 (C12), 25295-25311. [31] Erinin, M. A., Wang, S. D., Liu, R., Towle, D., Liu, X. & Duncan, J. H.2019Spray generation by a plunging breaker. Geophys. Res. Lett.46 (14), 8244-8251. [32] Fairall, C. W., Banner, M. L., Peirson, W. L., Asher, W. & Morison, R. P.2009Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res.114 (C10), C10001. [33] Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B. & Young, G. S.1996Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res.101, 3747-3764. [34] Fairall, C. W., Kepert, J. D. & Holland, G. J.1994The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst.2, 121-142. [35] Feireisl, E. & Novotný, A.2009Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser. · Zbl 1176.35126 [36] Fox, R. O., Laurent, F. & Vié, A.2018Conditional hyperbolic quadrature method of moments for kinetic equations. J. Comput. Phys.365, 269-293. · Zbl 1395.82232 [37] Fuentes, E., Coe, H., Green, D., De Leeuw, G. & Mcfiggans, G.2010Laboratory-generated primary marine aerosol via bubble-bursting and atomization. Atmos. Meas. Technol.3 (1), 141-162. [38] Hare, J. E., Hara, T., Edson, J. B. & Wilczack, J. M.1997A similarity analysis of the structure of airflow over surface waves. J. Phys. Oceanogr.27, 1018-1037. [39] Helgans, B. & Richter, D. H.2016Turbulent latent and sensible heat flux in the presence of evaporative droplets. Intl J. Multiphase Flow78, 1-11. [40] Hristov, T., Friehe, C. & Miller, S.1998Wave-coherent fields in air flow over ocean waves: identification of cooperative behavior buried in turbulence. Phys. Rev. Lett.81 (23), 5245. [41] Koga, M.1981Direct production of droplets from breaking wind-waves, its observation by a multi-colored overlapping exposure photographing technique. Tellus33, 552-563. [42] De Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E. R., O’Dowd, C., Shultz, M. & Schwartz, S. E.2011Production flux of sea spray aerosol. Rev. Geophys.49, RG2001. [43] Lewis, E. R. & Schwartz, S. E.2004Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models - A Critical Review, . American Geophysical Union. [44] Liu, B., Liu, H., Xie, L., Guan, C. & Zhao, D.2010A coupled atmosphere-wave-ocean modeling system: simulation of the intensity of an idealized tropical cyclone. Mon. Wealth. Rev.139 (1), 132-152. [45] Makin, V. K.1998Air-sea exchange of heat in the presence of wind waves and spray. J. Geophys. Res.103, 1137-1152. [46] Marchiso, E. & Fox, R. O.2013Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge University Press. [47] Marmottant, P. H. & Villermaux, E.2004On spray formation. J. Fluid Mech.498, 73-111. · Zbl 1067.76512 [48] Melville, W. K.1994Energy dissipation by breaking waves. J. Phys. Oceanogr.24, 2041-2049. [49] Melville, W. K.1996The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech.28, 279-321. [50] Mestayer, P. G., Van Eijk, A. M. J., De Leeuw, G. & Tranchant, B. S.1996Numerical simulation of the dynamics of sea spray over the waves. J. Geophys. Res.101, 20771-20797. [51] Michaelides, E. E. & Feng, Z.1994Heat transfer from a rigid sphere in a nonuniform flow and temperature field. Intl J. Heat Mass Transfer37 (14), 2069-2076. · Zbl 0926.76031 [52] Monahan, E. C., Spiel, D. E. & Davidson, K. L.1986A model of marine aerosol generation via whitecaps and wave disruption. In Oceanic Whitecaps (ed. Monahan, E. C. & Niocaill, G. M.), , vol. 2, pp. 167-174. Springer. [53] Mueller, J. A. & Veron, F.2009aA Lagrangian stochastic model for heavy particle dispersion in the atmospheric marine boundary layer. Boundary-Layer Meteorol.130 (2), 229-247. [54] Mueller, J. A. & Veron, F.2009bA sea state-dependent spume generation function. J. Phys. Oceanogr.39, 2363-2372. [55] Mueller, J. & Veron, F.2010aA Lagrangian stochastic model for sea-spray evaporation in the atmospheric marine boundary layer. Boundary-Layer Meteorol.137, 135-152. [56] Mueller, J. A. & Veron, F.2010bBulk formulation of the heat and water vapor fluxes at the air-sea interface, including nonmolecular contributions. J. Atmos. Sci.67, 234-247. [57] Mueller, J. A. & Veron, F.2014aImpact of sea spray on air-sea fluxes. Part I. Results from stochastic simulations of sea spray drops over the ocean. J. Phys. Oceanogr.44 (11), 2817-2834. [58] Mueller, J. A. & Veron, F.2014bImpact of sea spray on air-sea fluxes. Part II. Feedback effects. J. Phys. Oceanogr.44 (11), 2835-2853. [59] Ortiz-Suslow, D. G., Haus, B. K., Mehta, S. & Laxague, N. J. M.2016Sea spray generation in very high winds. J. Atmos. Sci.73 (10), 3975-3995. [60] Peng, T. & Richter, D.2017Influence of evaporating droplets in the turbulent marine atmospheric boundary layer. Boundary-Layer Meteorol.165 (3), 497-518. [61] Peng, T. & Richter, D.2019Sea spray and its feedback effects: assessing bulk algorithms of air-sea heat fluxes via direct numerical simulations. J. Phys. Oceanogr.49 (6), 1403-1421. [62] Pruppacher, H. R. & Klett, J. D.1996Microphysics of Clouds and Precipitation, vol. 18. Springer Science & Business Media. [63] Pruppacher, H. R. & Klett, J. D.1978Microphysics of Clouds and Precipitation. D. Riedel. [64] Ranz, W. E. & Marshall, W. R.1952Evaporation from drops. Chem. Engng Prog.48 (3), 141-146. [65] Richter, D. H.2015Turbulence modification by inertial particles and its influence on the spectral energy budget in planar Couette flow. Phys. Fluids27 (6), 063304. [66] Richter, D. H., Dempsey, A. E. & Sullivan, P. P.2019Turbulent transport of spray droplets in the vicinity of moving surface waves. J. Phys. Oceanogr.49 (7), 1789-1807. [67] Richter, D. H., Garcia, O. & Astephen, C.2016Particle stresses in dilute, polydisperse, two-way coupled turbulent flows. Phys. Rev. E93, 013111. [68] Richter, D. H. & Sullivan, P. P.2013aMomentum transfer in a turbulent, particle-laden Couette flow. Phys. Fluids25, 053304. [69] Richter, D. H. & Sullivan, P. P.2013bSea surface drag and the role of spray. Geophys. Res. Lett.40 (3), 656-660. [70] Richter, D. H. & Sullivan, P. P.2014Modification of near-wall coherent structures by inertial particles. Phys. Fluids26, 103304. [71] Rosenfeld, D., Woodley, W. L., Khain, A., Cotton, W. R., Carrio, G., Ginis, I. & Golden, J. H.2012Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meterol. Soc93, 987-1001. [72] Rouault, M. P., Mestayer, P. G. & Schiestel, R.1991A model of evaporating spray droplet dispersion. J. Geophys. Res.96, 7181-7200. [73] Shpund, J., Pinsky, M. & Khain, A.2011Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part I. The impact of large eddies. J. Atmos. Sci.68 (10), 2366-2384. [74] Shpund, J., Zhang, J. A., Pinsky, M. & Khain, A.2012Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part II. The role of sea spray. J. Atmos. Sci.69 (12), 3501-3514. [75] Slinn, S. A. & Slinn, W. G. N.1980Prediction for particle deposition on natural waters. Atmos. Environ.14 (9), 1013-1016. [76] Smith, M. H., Park, P. M. & Consterdine, I. E.1993Marine aerosol concentration and estimated fluxes over the sea. Q. J. R. Meteorol. Soc.119, 809-824. [77] Spiel, D. E.1995On the births of jet drops from bubbles bursting on water surfaces. J. Geophys. Res.100 (C3), 4995-5006. [78] Spiel, D. E.1997More on the births of jet drops from bubbles bursting on seawater surfaces. J. Geophys. Res.102 (C3), 5815-5821. [79] Spiel, D. E.1998On the births of film drops from bubbles bursting on seawater surfaces. J. Geophys. Res.103 (C11), 24907-24918. [80] Terray, E. A., Donelan, M. A., Agrawal, Y. C., Drennan, W. M., Kahama, K. K., Williams, A. J. Iii, Hwang, P. A. & Kitaigorodskii, S. A.1996Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr.26, 792-807. [81] Thorpe, S. A.1993Energy loss by breaking waves. J. Phys. Oceanogr.23, 2498-2502. [82] Troitskaya, Y., Kandaurov, A., Ermakova, O., Kozlov, D., Sergeev, D. & Zilitinkevich, S.2018The bag breakup spume droplet generation mechanism at high winds. Part I. Spray generation function. J. Phys. Oceanogr.48 (9), 2167-2188. [83] Van Eijk, A. M. J., Tranchant, B. S. & Mestayer, P. G.2001Seacluse: numerical simulation of evaporating sea spray droplets. J. Geophys. Res.106, 2573-2588. [84] Veron, F.2015Ocean spray. Annu. Rev. Fluid Mech.47, 507-538. [85] Veron, F., Hopkins, C., Harrison, E. L. & Mueller, J. A.2012Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett.39 (16), L16602. [86] Veron, F. & Melville, W. K.2001Experiments on the stability and transition of wind-driven water surfaces. J. Fluid Mech.446, 25-65. · Zbl 1107.76308 [87] Walls, P. L. L., Henaux, L. & Bird, J. C.2015Jet drops from bursting bubbles: how gravity and viscosity couple to inhibit droplet production. Phys. Rev. E92 (2), 021002. [88] Wang, X., Deane, G. B., Moore, K. A., Ryder, O. S., Stokes, M. D., Beall, C. M., Collins, D. B., Santander, M. V., Burrows, S. M., Sultana, C. M.et al.2017The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles. Proc. Natl Acad. Sci. USA114 (27), 6978-6983. [89] Wu, J.2002Jet drops produced by bubbles bursting at the surface of seawater. J. Phys. Oceanogr.32, 3286-3290. [90] Zhang, J. A., Black, P. G., French, J. R. & Drennan, W. M.2008First direct measurements of enthalpy flux in the hurricane boundary layer: the CBLAST results. Geophys. Res. Lett.35 (14), L14813. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.