×

Proca-stinated cosmology. II: Matter, halo, and lensing statistics in the vector Galileon. (English) Zbl 1485.83098

Summary: The generalised Proca (GP) theory is a modified gravity model in which the acceleration of the cosmic expansion rate can be explained by self interactions of a cosmological vector field. In this paper we study a particular sub-class of the GP theory, with up to cubic order Lagrangian, known as the cubic vector Galileon (cvG) model. This model is similar to the cubic scalar Galileon (csG) in many aspects, including a fifth force and the Vainshtein screening mechanism, but with the additional flexibility that the strength of the fifth force depends on an extra parameter – interpolating between zero and the full strength of the csG model – while the background expansion history is independent of this parameter. It offers an interesting alternative to \(\Lambda\)CDM in explaining the cosmic acceleration, as well as a solution to the tension between early- and late-time measurements of the Hubble constant \(H_0\). To identify the best ways to test this model, in this paper we conduct a comprehensive study of the phenomenology of this model in the nonlinear regime of large-scale structure formation, using a suite of N-body simulations run with the modified gravity code ECOSMOG. By inspecting thirteen statistics of the dark matter field, dark matter haloes and weak lensing maps, we find that the fifth force in this model can have particularly significant effects on the large-scale velocity field and lensing potential at late times, which suggest that redshift-space distortions and weak lensing can place strong constraints on it.
For Part I, see [C. Becker et al., ibid. 2020, No. 10, Paper No. 55, 37 p. (2020; Zbl)].

MSC:

83E05 Geometrodynamics and the holographic principle
83F05 Relativistic cosmology
57R25 Vector fields, frame fields in differential topology
83C45 Quantization of the gravitational field
81V19 Other fundamental interactions in quantum theory
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
81V70 Many-body theory; quantum Hall effect
83C50 Electromagnetic fields in general relativity and gravitational theory
78A45 Diffraction, scattering
70H45 Constrained dynamics, Dirac’s theory of constraints
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Will, Clifford M., The Confrontation between General Relativity and Experiment, Living Rev. Rel., 17, 4 (2014) · Zbl 1316.83019 · doi:10.12942/lrr-2014-4
[2] Verde, L.; Treu, T.; Riess, A. G., Tensions between the Early and the Late Universe, Nature Astron., 3, 891 (2019) · doi:10.1038/s41550-019-0902-0
[3] DES Collaboration; Troxel, M. A., Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.043528
[4] HSC Collaboration; Hikage, Chiaki, Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data, Publ. Astron. Soc. Jap., 71, 43 (2019) · doi:10.1093/pasj/psz010
[5] KiDS Collaboration; Asgari, Marika, KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics, Astron. Astrophys., 645, A104 (2021) · doi:10.1051/0004-6361/202039070
[6] Hildebrandt, H., KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data, Astron. Astrophys., 633, A69 (2020) · doi:10.1051/0004-6361/201834878
[7] Koyama, Kazuya, Cosmological Tests of Modified Gravity, Rept. Prog. Phys., 79 (2016) · doi:10.1088/0034-4885/79/4/046902
[8] Horndeski, Gregory Walter, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys., 10, 363-384 (1974) · doi:10.1007/BF01807638
[9] Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun’ichi, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys., 126, 511-529 (2011) · Zbl 1243.83080 · doi:10.1143/PTP.126.511
[10] Deffayet, C.; Gao, Xian; Steer, D. A.; Zahariade, G., From k-essence to generalised Galileons, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.064039
[11] Nicolis, Alberto; Rattazzi, Riccardo; Trincherini, Enrico, The Galileon as a local modification of gravity, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.064036
[12] Deffayet, C.; Esposito-Farese, Gilles; Vikman, A., Covariant Galileon, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.084003
[13] Deffayet, C.; Deser, S.; Esposito-Farese, G., Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.064015
[14] Vainshtein, A. I., To the problem of nonvanishing gravitation mass, Phys. Lett. B, 39, 393-394 (1972) · doi:10.1016/0370-2693(72)90147-5
[15] Babichev, E.; Deffayet, C.; Ziour, R., The Recovery of General Relativity in massive gravity via the Vainshtein mechanism, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.104008
[16] Dvali, G. R.; Gabadadze, Gregory; Porrati, Massimo, 4-D gravity on a brane in 5-D Minkowski space, Phys. Lett. B, 485, 208-214 (2000) · Zbl 0961.83045 · doi:10.1016/S0370-2693(00)00669-9
[17] Li, Baojiu; Barreira, Alexandre; Baugh, Carlton M.; Hellwing, Wojciech A.; Koyama, Kazuya; Pascoli, Silvia, Simulating the quartic Galileon gravity model on adaptively refined meshes, JCAP, 11 (2013) · doi:10.1088/1475-7516/2013/11/012
[18] Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Pascoli, Silvia, Nonlinear structure formation in the Cubic Galileon gravity model, JCAP, 10 (2013) · doi:10.1088/1475-7516/2013/10/027
[19] Heisenberg, Lavinia, Generalization of the Proca Action, JCAP, 05 (2014) · doi:10.1088/1475-7516/2014/05/015
[20] Allys, Erwan; Peter, Patrick; Rodriguez, Yeinzon, Generalized Proca action for an Abelian vector field, JCAP, 02 (2016) · doi:10.1088/1475-7516/2016/02/004
[21] Beltran Jimenez, Jose; Heisenberg, Lavinia, Derivative self-interactions for a massive vector field, Phys. Lett. B, 757, 405-411 (2016) · Zbl 1360.83046 · doi:10.1016/j.physletb.2016.04.017
[22] De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li, Cosmology in generalized Proca theories, JCAP, 06 (2016) · Zbl 1398.83077 · doi:10.1088/1475-7516/2016/06/048
[23] LIGO Scientific, Virgo Collaboration; Abbott, B. P., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.161101
[24] Goldstein, A., An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A, Astrophys. J. Lett., 848, L14 (2017) · doi:10.3847/2041-8213/aa8f41
[25] de Felice, Antonio; Heisenberg, Lavinia; Tsujikawa, Shinji, Observational constraints on generalized Proca theories, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.123540
[26] Heisenberg, Lavinia; Villarrubia-Rojo, Hector, Proca in the sky, JCAP, 03 (2021) · Zbl 1484.83124 · doi:10.1088/1475-7516/2021/03/032
[27] De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li, Effective gravitational couplings for cosmological perturbations in generalized Proca theories, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.044024
[28] Nakamura, Shintaro; De Felice, Antonio; Kase, Ryotaro; Tsujikawa, Shinji, Constraints on massive vector dark energy models from integrated Sachs-Wolfe-galaxy cross-correlations, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.063533
[29] Becker, Christoph; Arnold, Christian; Li, Baojiu; Heisenberg, Lavinia, Proca-stinated cosmology. Part I. A N-body code for the vector Galileon, JCAP, 10 (2020) · Zbl 1494.83027 · doi:10.1088/1475-7516/2020/10/055
[30] Barreira, Alexandre; Llinares, Claudio; Bose, Sownak; Li, Baojiu, RAY-RAMSES: a code for ray tracing on the fly in N-body simulations, JCAP, 05 (2016) · doi:10.1088/1475-7516/2016/05/001
[31] De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji; Zhang, Ying-li; Zhao, Gong-Bo, Screening fifth forces in generalized Proca theories, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.104016
[32] Li, Baojiu; Zhao, Gong-Bo; Koyama, Kazuya, Exploring Vainshtein mechanism on adaptively refined meshes, JCAP, 05 (2013) · doi:10.1088/1475-7516/2013/05/023
[33] White, Martin J.; Hu, Wayne, A New algorithm for computing statistics of weak lensing by large scale structure, Astrophys. J., 537, 1-11 (2000) · doi:10.1086/309009
[34] Li, Baojiu; King, Lindsay J.; Zhao, Gong-Bo; Zhao, HongSheng, A Semi-analytic Ray-tracing Algorithm for Weak Lensing, Mon. Not. Roy. Astron. Soc., 415, 881 (2011) · doi:10.1111/j.1365-2966.2011.18754.x
[35] Teyssier, Romain, Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses, Astron. Astrophys., 385, 337-364 (2002) · doi:10.1051/0004-6361:20011817
[36] Crocce, M.; Pueblas, S.; Scoccimarro, R., Transients from Initial Conditions in Cosmological Simulations, Mon. Not. Roy. Astron. Soc., 373, 369-381 (2006) · doi:10.1111/j.1365-2966.2006.11040.x
[37] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[38] A. Lewis and A. Challinor, CAMB: Code for Anisotropies in the Microwave Background, (2011) https://camb.info/.
[39] Li, Baojiu; Zhao, Gong-Bo; Teyssier, Romain; Koyama, Kazuya, ECOSMOG: An Efficient Code for Simulating Modified Gravity, JCAP, 01 (2012) · doi:10.1088/1475-7516/2012/01/051
[40] Goroff, M. H.; Grinstein, Benjamin; Rey, S. J.; Wise, Mark B., Coupling of Modes of Cosmological Mass Density Fluctuations, Astrophys. J., 311, 6-14 (1986) · doi:10.1086/164749
[41] Scoccimarro, Roman; Colombi, Stephane; Fry, James N.; Frieman, Joshua A.; Hivon, Eric; Melott, Adrian, Nonlinear evolution of the bispectrum of cosmological perturbations, Astrophys. J., 496, 586 (1998) · doi:10.1086/305399
[42] Colombi, Stephane; Jaffe, Andrew H.; Novikov, Dmitri; Pichon, Christophe, Accurate estimators of power spectra in N-body simulations, Mon. Not. Roy. Astron. Soc., 393, 511 (2009) · doi:10.1111/j.1365-2966.2008.14176.x
[43] A. Savitzky and M.J. Golay, Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem.36 (1964) 1627. · doi:10.1021/ac60214a047
[44] Scoccimarro, Roman, Redshift-space distortions, pairwise velocities and nonlinearities, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.083007
[45] Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun, Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.063522
[46] Jennings, Elise, An improved model for the nonlinear velocity power spectrum, Mon. Not. Roy. Astron. Soc., 427, L25-L29 (2012) · doi:10.1111/j.1745-3933.2012.01338.x
[47] Cautun, Marius C.; van de Weygaert, Rien, The DTFE public software: The Delaunay Tessellation Field Estimator code (2011)
[48] Hand, Nick; Feng, Yu; Beutler, Florian; Li, Yin; Modi, Chirag; Seljak, Uros, nbodykit: an open-source, massively parallel toolkit for large-scale structure, Astron. J., 156, 160 (2018) · doi:10.3847/1538-3881/aadae0
[49] Hashimoto, Ichihiko; Rasera, Yann; Taruya, Atsushi, Precision cosmology with redshift-space bispectrum: a perturbation theory based model at one-loop order, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.043526
[50] Eggemeier, Alexander; Scoccimarro, Roman; Smith, Robert E., Bias Loop Corrections to the Galaxy Bispectrum, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.123514
[51] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, The Galaxy Power Spectrum and Bispectrum in Redshift Space, JCAP, 12 (2018) · Zbl 1392.83093 · doi:10.1088/1475-7516/2018/12/035
[52] Oddo, Andrea; Sefusatti, Emiliano; Porciani, Cristiano; Monaco, Pierluigi; Sánchez, Ariel G., Toward a robust inference method for the galaxy bispectrum: likelihood function and model selection, JCAP, 03 (2020) · doi:10.1088/1475-7516/2020/03/056
[53] Gil-Marin, Hector; Schmidt, Fabian; Hu, Wayne; Jimenez, Raul; Verde, Licia, The Bispectrum of f(R) Cosmologies, JCAP, 11 (2011) · doi:10.1088/1475-7516/2011/11/019
[54] Bellini, Emilio; Jimenez, Raul; Verde, Licia, Signatures of Horndeski gravity on the Dark Matter Bispectrum, JCAP, 05 (2015) · doi:10.1088/1475-7516/2015/05/057
[55] Munshi, Dipak, The Integrated Bispectrum in Modified Gravity Theories, JCAP, 01 (2017) · Zbl 1515.83240 · doi:10.1088/1475-7516/2017/01/049
[56] Bose, Benjamin; Taruya, Atsushi, The one-loop matter bispectrum as a probe of gravity and dark energy, JCAP, 10 (2018) · doi:10.1088/1475-7516/2018/10/019
[57] Bose, Benjamin; Byun, Joyce; Lacasa, Fabien; Moradinezhad Dizgah, Azadeh; Lombriser, Lucas, Modelling the matter bispectrum at small scales in modified gravity, JCAP, 02 (2020) · doi:10.1088/1475-7516/2020/02/025
[58] Hahn, ChangHoon; Villaescusa-Navarro, Francisco; Castorina, Emanuele; Scoccimarro, Roman, Constraining M_ν with the bispectrum. Part I. Breaking parameter degeneracies, JCAP, 03 (2020) · doi:10.1088/1475-7516/2020/03/040
[59] Moradinezhad Dizgah, Azadeh; Biagetti, Matteo; Sefusatti, Emiliano; Desjacques, Vincent; Noreña, Jorge, Primordial Non-Gaussianity from Biased Tracers: Likelihood Analysis of Real-Space Power Spectrum and Bispectrum, JCAP, 05 (2021) · Zbl 1485.83168 · doi:10.1088/1475-7516/2021/05/015
[60] Sefusatti, Emiliano; Crocce, Martin; Scoccimarro, Roman; Couchman, Hugh, Accurate Estimators of Correlation Functions in Fourier Space, Mon. Not. Roy. Astron. Soc., 460, 3624-3636 (2016) · doi:10.1093/mnras/stw1229
[61] Scoccimarro, Roman, Fast Estimators for Redshift-Space Clustering, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.083532
[62] T. Baldauf, Effective Field Theory of Large-Scale Structure, Les Houches Lect. Notes108 (2020). · doi:10.1093/oso/9780198855743.003.0007
[63] Alam, Shadab, Testing the theory of gravity with DESI: estimators, predictions and simulation requirements (2020)
[64] Springel, Volker; White, Simon D. M.; Tormen, Giuseppe; Kauffmann, Guinevere, Populating a cluster of galaxies. 1. Results at z = 0, Mon. Not. Roy. Astron. Soc., 328, 726 (2001) · doi:10.1046/j.1365-8711.2001.04912.x
[65] Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi, The Rockstar Phase-Space Temporal Halo Finder and the Velocity Offsets of Cluster Cores, Astrophys. J., 762, 109 (2013) · doi:10.1088/0004-637X/762/2/109
[66] Li, Baojiu; Zhao, Hongsheng, Structure Formation by the Fifth Force III: Segregation of Baryons and Dark Matter, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.104047
[67] Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Lombriser, Lucas; Baugh, Carlton M.; Pascoli, Silvia, Halo model and halo properties in Galileon gravity cosmologies, JCAP, 04 (2014) · doi:10.1088/1475-7516/2014/04/029
[68] Hernández-Aguayo, César; Arnold, Christian; Li, Baojiu; Baugh, Carlton M., Galaxy formation in the brane world I: overview and first results, Mon. Not. Roy. Astron. Soc., 503, 3867-3885 (2021) · doi:10.1093/mnras/stab694
[69] P.J.E. Peebles, The Large-Scale Structure of the Universe, vol. 98, Princeton University Press (1980) [DOI]. · Zbl 1422.85005 · doi:10.23943/princeton/9780691209838.001.0001
[70] Reid, Beth A.; White, Martin, Towards an accurate model of the redshift space clustering of halos in the quasilinear regime, Mon. Not. Roy. Astron. Soc., 417, 1913-1927 (2011) · doi:10.1111/j.1365-2966.2011.19379.x
[71] Hamilton, A. J. S., Linear redshift distortions: A Review (1997)
[72] De Felice, Antonio; Geng, Chao-Qiang; Pookkillath, Masroor C.; Yin, Lu, Reducing the H_0 tension with generalized Proca theory, JCAP, 08 (2020) · Zbl 1492.83035 · doi:10.1088/1475-7516/2020/08/038
[73] Barreira, Alexandre; Li, Baojiu; Baugh, Carlton; Pascoli, Silvia, Modified gravity with massive neutrinos as a testable alternative cosmological model, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.023528
[74] Falck, Bridget; Koyama, Kazuya; Zhao, Gong-bo; Li, Baojiu, The Vainshtein Mechanism in the Cosmic Web, JCAP, 07 (2014) · doi:10.1088/1475-7516/2014/07/058
[75] Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo, Cosmic Web and Environmental Dependence of Screening: Vainshtein vs. Chameleon, JCAP, 07 (2015) · doi:10.1088/1475-7516/2015/07/049
[76] Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M., The Structure of cold dark matter halos, Astrophys. J., 462, 563-575 (1996) · doi:10.1086/177173
[77] Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M., A Universal density profile from hierarchical clustering, Astrophys. J., 490, 493-508 (1997) · doi:10.1086/304888
[78] Maccio’, Andrea V.; Dutton, Aaron A.; van den Bosch, Frank C.; Moore, Ben; Potter, Doug; Stadel, Joachim, Concentration, Spin and Shape of Dark Matter Haloes: Scatter and the Dependence on Mass and Environment, Mon. Not. Roy. Astron. Soc., 378, 55-71 (2007) · doi:10.1111/j.1365-2966.2007.11720.x
[79] Neto, Angelo F.; Gao, Liang; Bett, Philip; Cole, Shaun; Navarro, Julio F.; Frenk, Carlos S., The statistics of lambda CDM Halo Concentrations, Mon. Not. Roy. Astron. Soc., 381, 1450-1462 (2007) · doi:10.1111/j.1365-2966.2007.12381.x
[80] Duffy, Alan R.; Schaye, Joop; Kay, Scott T.; Dalla Vecchia, Claudio, Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology, Mon. Not. Roy. Astron. Soc., 390, L64 (2008) · doi:10.1111/j.1745-3933.2008.00537.x
[81] Mitchell, Myles A.; Arnold, Christian; He, Jian-hua; Li, Baojiu, A general framework to test gravity using galaxy clusters II: A universal model for the halo concentration in f(R) gravity, Mon. Not. Roy. Astron. Soc., 487, 1410-1425 (2019) · doi:10.1093/mnras/stz1389
[82] Zhang, Pengjie; Liguori, Michele; Bean, Rachel; Dodelson, Scott, Probing Gravity at Cosmological Scales by Measurements which Test the Relationship between Gravitational Lensing and Matter Overdensity, Phys. Rev. Lett., 99 (2007) · doi:10.1103/PhysRevLett.99.141302
[83] Davies, Christopher T.; Cautun, Marius; Li, Baojiu, Weak lensing by voids in weak lensing maps, Mon. Not. Roy. Astron. Soc., 480, L101-L105 (2018) · doi:10.1093/mnrasl/sly135
[84] Davies, Christopher T.; Paillas, Enrique; Cautun, Marius; Li, Baojiu, Optimal void finders in weak lensing maps, Mon. Not. Roy. Astron. Soc., 500, 2417-2439 (2020) · doi:10.1093/mnras/staa3262
[85] Barreira, Alexandre; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia, Spherical collapse in Galileon gravity: fifth force solutions, halo mass function and halo bias, JCAP, 11 (2013) · doi:10.1088/1475-7516/2013/11/056
[86] Winther, Hans A.; Ferreira, Pedro G., Vainshtein mechanism beyond the quasistatic approximation, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.064005
[87] Barreira, Alexandre; Li, Baojiu; Jennings, Elise; Merten, Julian; King, Lindsay; Baugh, Carlton, Galaxy cluster lensing masses in modified lensing potentials, Mon. Not. Roy. Astron. Soc., 454, 4085-4102 (2015) · doi:10.1093/mnras/stv2211
[88] LSST Science, LSST Project Collaboration; Abell, Paul A., LSST Science Book, Version 2.0 (2009)
[89] Jain, Bhuvnesh; Van Waerbeke, Ludovic Van, Statistics of dark matter halos from gravitational lensing, Astrophys. J. Lett., 530, L1 (2000) · doi:10.1086/312480
[90] Dietrich, J. P.; Hartlap, J., Cosmology with the shear-peak statistics, Mon. Not. Roy. Astron. Soc., 402, 1049 (2010) · doi:10.1111/j.1365-2966.2009.15948.x
[91] Shirasaki, Masato; Nishimichi, Takahiro; Li, Baojiu; Higuchi, Yuichi, The imprint of f(R) gravity on weak gravitational lensing - II. Information content in cosmic shear statistics, Mon. Not. Roy. Astron. Soc., 466, 2402-2417 (2017) · doi:10.1093/mnras/stw3254
[92] Li, Zack; Liu, Jia; Matilla, José Manuel Zorrilla; Coulton, William R., Constraining neutrino mass with tomographic weak lensing peak counts, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.063527
[93] Liu, Jia; Hill, J. Colin; Sherwin, Blake D.; Petri, Andrea; Böhm, Vanessa; Haiman, Zoltán, CMB lensing beyond the power spectrum: Cosmological constraints from the one-point probability distribution function and peak counts, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.103501
[94] Davies, Christopher T.; Cautun, Marius; Li, Baojiu, The self similarity of weak lensing peaks, Mon. Not. Roy. Astron. Soc., 488, 5833-5851 (2019) · doi:10.1093/mnras/stz2157
[95] Fong, Matthew; Choi, Miyoung; Catlett, Victoria; Lee, Brandyn; Peel, Austin; Bowyer, Rachel, The impact of baryonic physics and massive neutrinos on weak lensing peak statistics, Mon. Not. Roy. Astron. Soc., 488, 3340-3357 (2019) · doi:10.1093/mnras/stz1882
[96] Coulton, William R.; Liu, Jia; McCarthy, Ian G.; Osato, Ken, Weak Lensing Minima and Peaks: Cosmological Constraints and the Impact of Baryons, Mon. Not. Roy. Astron. Soc., 495, 2531-2542 (2020) · doi:10.1093/mnras/staa1098
[97] Davies, Christopher T.; Cautun, Marius; Li, Baojiu, Cosmological test of gravity using weak lensing voids, Mon. Not. Roy. Astron. Soc., 490, 4907-4917 (2019) · doi:10.1093/mnras/stz2933
[98] Hamaus, Nico; Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D., Probing cosmology and gravity with redshift-space distortions around voids, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/036
[99] van de Weygaert, Rien; Platen, Erwin; Kim, Sang Pyo, Cosmic Voids: structure, dynamics and galaxies, Int. J. Mod. Phys. Conf. Ser., 01, 41-66 (2011) · doi:10.1142/S2010194511000092
[100] Clampitt, Joseph; Jain, Bhuvnesh, Lensing Measurements of the Mass Distribution in SDSS Voids, Mon. Not. Roy. Astron. Soc., 454, 3357-3365 (2015) · doi:10.1093/mnras/stv2215
[101] DES Collaboration; Gruen, D., Weak lensing by galaxy troughs in DES Science Verification data, Mon. Not. Roy. Astron. Soc., 455, 3367-3380 (2016) · doi:10.1093/mnras/stv2506
[102] Bos, E. G. Patrick; van de Weygaert, Rien; Dolag, Klaus; Pettorino, Valeria, The darkness that shaped the void: dark energy and cosmic voids, Mon. Not. Roy. Astron. Soc., 426, 440 (2012) · doi:10.1111/j.1365-2966.2012.21478.x
[103] Spolyar, Douglas; Sahlén, Martin; Silk, Joe, Topology and Dark Energy: Testing Gravity in Voids, Phys. Rev. Lett., 111 (2013) · doi:10.1103/PhysRevLett.111.241103
[104] Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu, Testing Gravity using Cosmic Voids, Mon. Not. Roy. Astron. Soc., 451, 1036-1055 (2015) · doi:10.1093/mnras/stv777
[105] Barreira, Alexandre; Cautun, Marius; Li, Baojiu; Baugh, Carlton; Pascoli, Silvia, Weak lensing by voids in modified lensing potentials, JCAP, 08 (2015) · doi:10.1088/1475-7516/2015/08/028
[106] Pisani, Alice; Sutter, P. M.; Hamaus, Nico; Alizadeh, Esfandiar; Biswas, Rahul; Wandelt, Benjamin D., Counting voids to probe dark energy, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.083531
[107] Barreira, Alexandre; Bose, Sownak; Li, Baojiu; Llinares, Claudio, Weak lensing by galaxy troughs with modified gravity, JCAP, 02 (2017) · Zbl 1515.83010 · doi:10.1088/1475-7516/2017/02/031
[108] Hamaus, Nico; Pisani, Alice; Sutter, Paul M.; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D., Constraints on Cosmology and Gravity from the Dynamics of Voids, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.091302
[109] Higuchi, Yuichi; Shirasaki, Masato, The imprint of f(R) gravity on weak gravitational lensing - I. Connection between observables and large-scale structure, Mon. Not. Roy. Astron. Soc., 459, 2762-2776 (2016) · doi:10.1093/mnras/stw814
[110] Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius, Using Voids to Unscreen Modified Gravity, Mon. Not. Roy. Astron. Soc., 475, 3262-3272 (2018) · doi:10.1093/mnras/stx3288
[111] Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu, The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests, Mon. Not. Roy. Astron. Soc., 476, 3195-3217 (2018) · doi:10.1093/mnras/sty463
[112] Paillas, Enrique; Cautun, Marius; Li, Baojiu; Cai, Yan-Chuan; Padilla, Nelson; Armijo, Joaquín, The Santiago-Harvard-Edinburgh-Durham void comparison II: unveiling the Vainshtein screening using weak lensing, Mon. Not. Roy. Astron. Soc., 484, 1149-1165 (2019) · doi:10.1093/mnras/stz022
[113] Baker, Tessa; Clampitt, Joseph; Jain, Bhuvnesh; Trodden, Mark, Void Lensing as a Test of Gravity, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.023511
[114] Pisani, Alice, Cosmic voids: a novel probe to shed light on our Universe (2019)
[115] Baker, Tessa, Novel Probes Project: Tests of gravity on astrophysical scales, Rev. Mod. Phys., 93 (2021) · doi:10.1103/RevModPhys.93.015003
[116] Hamaus, Nico; Pisani, Alice; Choi, Jin-Ah; Lavaux, Guilhem; Wandelt, Benjamin D.; Weller, Jochen, Precision cosmology with voids in the final BOSS data, JCAP, 12 (2020) · Zbl 1484.85001 · doi:10.1088/1475-7516/2020/12/023
[117] Contarini, Sofia; Marulli, Federico; Moscardini, Lauro; Veropalumbo, Alfonso; Giocoli, Carlo; Baldi, Marco, Cosmic voids in modified gravity models with massive neutrinos (2020) · doi:10.1093/mnras/stab1112
[118] White, S. D. M., The hierarchy of correlation functions and its relation to other measures of galaxy clustering, Mon. Not. Roy. Astron. Soc., 186, 145 (1979)
[119] J.N. Fry, Statistics of Voids in Hierarchical Universes, Astrophys. J.306 (1986) 358. · doi:10.1086/164348
[120] Biswas, Rahul; Alizadeh, Esfandiar; Wandelt, Benjamin D., Voids as a Precision Probe of Dark Energy, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.023002
[121] Lavaux, Guilhem; Wandelt, Benjamin D., Precision cosmography with stacked voids, Astrophys. J., 754, 109 (2012) · doi:10.1088/0004-637X/754/2/109
[122] Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T., A Cosmic Watershed: The WVF Void Detection Technique, Mon. Not. Roy. Astron. Soc., 380, 551-570 (2007) · doi:10.1111/j.1365-2966.2007.12125.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.