×

Low-scale seesaw from neutrino condensation. (English) Zbl 1472.83115

Summary: Knowledge of the mechanism of neutrino mass generation would help understand a lot more about Lepton Number Violation (LNV), the cosmological evolution of the Universe, or the evolution of astronomical objects. Here we propose a verifiable and viable extension of the Standard model for neutrino mass generation, with a low-scale seesaw mechanism via LNV condensation in the sector of sterile neutrinos. To prove the concept, we analyze a simplified model of just a single family of elementary particles and check it against a set of phenomenological constraints coming from electroweak symmetry breaking, neutrino masses, leptogenesis and dark matter. The model predicts (i) TeV scale quasi-degenerate heavy sterile neutrinos, suitable for leptogenesis with resonant enhancement of the CP asymmetry, (ii) a set of additional heavy Higgs bosons whose existence can be challenged at the LHC, (iii) an additional light and sterile Higgs scalar which is a candidate for decaying warm dark matter, and (iv) a majoron. Since the model is based on simple and robust principles of dynamical mass generation, its parameters are very restricted, but remarkably it is still within current phenomenological limits.

MSC:

83F05 Relativistic cosmology
81V15 Weak interaction in quantum theory
85A05 Galactic and stellar dynamics
81V22 Unified quantum theories
81R40 Symmetry breaking in quantum theory
83C56 Dark matter and dark energy
81R05 Finite-dimensional groups and algebras motivated by physics and their representations

Software:

PyR@TE
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Davidson, S.; Ibarra, A., Phys. Lett. B, 535, 25 (2002)
[2] Pilaftsis, A., Phys. Rev. D, 56, 5431 (1997)
[3] Asaka, T.; Shaposhnikov, M., Phys. Lett. B, 620, 17 (2005)
[4] Malinsky, M.; Romao, J. C.; Valle, J. W.F., Phys. Rev. Lett., 95, Article 161801 pp. (2005)
[5] Gavela, M. B.; Hambye, T.; Hernandez, D.; Hernandez, P., J. High Energy Phys., 09, Article 038 pp. (2009)
[6] Martin, S. P., Phys. Rev. D, 44, 2892 (1991)
[7] Antusch, S.; Kersten, J.; Lindner, M.; Ratz, M., Nucl. Phys. B, 658, 203 (2003)
[8] Smetana, A., Eur. Phys. J. C, 73, 2513 (2013)
[9] Smetana, A. (2013), Charles U., Ph.D. thesis
[10] Bardeen, W. A.; Hill, C. T.; Lindner, M., Phys. Rev. D, 41, 1647 (1990)
[11] Hill, C. T.; Luty, M. A.; Paschos, E. A., Phys. Rev. D, 43, 3011 (1991)
[12] Cvetic, G., Rev. Mod. Phys., 71, 513 (1999)
[13] Ivanov, I. P., Prog. Part. Nucl. Phys., 95, 160 (2017)
[14] Chalons, G.; Domingo, F., Phys. Rev. D, 86, Article 115024 pp. (2012)
[15] Luty, M. A., Phys. Rev. D, 41, 2893 (1990)
[16] Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C., Phys. Rev. D, 98, Article 030001 pp. (2018)
[17] Degrassi, G.; Di Vita, S.; Elias-Miro, J.; Espinosa, J. R.; Giudice, G. F.; Isidori, G.; Strumia, A., J. High Energy Phys., 08, Article 098 pp. (2012)
[18] Buchmuller, W.; Plumacher, M., Phys. Lett. B, 389, 73 (1996)
[19] Iso, S.; Okada, N.; Orikasa, Y., Phys. Rev. D, 83, Article 093011 pp. (2011)
[20] de Salas, P. F.; Forero, D. V.; Ternes, C. A.; Tortola, M.; Valle, J. W.F., Phys. Lett. B, 782, 633 (2018)
[21] Kuo, J.-L.; Lattanzi, M.; Cheung, K.; Valle, J. W.F. (2018)
[22] Blanchet, S.; Hambye, T.; Josse-Michaux, F.-X., J. High Energy Phys., 04, Article 023 pp. (2010) · Zbl 1272.83090
[23] Blanchet, S.; Di Bari, P., New J. Phys., 14, Article 125012 pp. (2012)
[24] Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A., Comput. Phys. Commun., 185, 1130 (2014) · Zbl 1360.81019
[25] Lyonnet, F.; Schienbein, I., Comput. Phys. Commun., 213, 181 (2017) · Zbl 1376.81054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.