×

FlowPy – a numerical solver for functional renormalization group equations. (English) Zbl 1344.81016

Summary: FlowPy is a numerical toolbox for the solution of partial differential equations encountered in Functional Renormalization Group equations. This toolbox compiles flow equations to fast machine code and is able to handle coupled systems of flow equations with full momentum dependence, which furthermore may be given implicitly.

MSC:

81-04 Software, source code, etc. for problems pertaining to quantum theory
81T17 Renormalization group methods applied to problems in quantum field theory

Software:

FlowPy; CrasyDSE
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Daniel F. Litim, Jan M. Pawlowski, On gauge invariant Wilsonian flows, 1998. hep-th/9901063. · Zbl 0999.81061
[2] Aoki, K., Introduction to the nonperturbative renormalization group and its recent applications, Internat. J. Modern Phys. B, 14, 1249-1326, (2000) · Zbl 1219.81199
[3] Berges, Jurgen; Tetradis, Nikolaos; Wetterich, Christof, Non-perturbative renormalization flow in quantum field theory and statistical physics, Phys. Rep., 363, 223-386, (2002) · Zbl 0994.81077
[4] Polonyi, Janos, Lectures on the functional renormalization group method, Cent. Eur. J. Phys., 1, 1-71, (2003)
[5] Pawlowski, Jan M., Aspects of the functional renormalisation group, Ann. Physics, 322, 2831-2915, (2007) · Zbl 1132.81041
[6] Holger Gies, Introduction to the functional RG and applications to gauge theories, 2006. hep-ph/0611146. · Zbl 1257.81058
[7] Hidenori Sonoda, The exact renormalization group—renormalization theory revisited, 2007. arXiv:0710.1662 [hep-th]. · Zbl 1131.81034
[8] Bertrand Delamotte, An introduction to the nonperturbative renormalization group, 2007. cond-mat/0702365. · Zbl 1138.82013
[9] Bagnuls, C.; Bervillier, C., Exact renormalization group equations. an introductory review, Phys. Rep., 348, 91, (2001) · Zbl 0969.81596
[10] Synatschke, Franziska; Gies, Holger; Wipf, Andreas, Phase diagram and fixed-point structure of two dimensional \(N = 1\) wess – zumino models, Phys. Rev., D80, 085007, (2009), arXiv:0907.4229 [hep-th]
[11] Synatschke, Franziska; Braun, Jens; Wipf, Andreas, \(N = 1\) Wess Zumino model in \(d = 3\) at zero and finite temperature, Phys. Rev., D81, 125001, (2010), arXiv:1001.2399 [hep-th]
[12] Pawlowski, Jan M., The QCD phase diagram: results and challenges, AIP Conf. Proc., 1343, 75-80, (2011), arXiv:1012.5075 [hep-ph]
[13] Braun, Jens, Fermion interactions and universal behavior in strongly interacting theories, J. Phys. G, 39, 033001, (2012), 2011. arXiv:1108.4449 [hep-ph]
[14] Wetterich, Christof, Exact evolution equation for the effective potential, Phys. Lett., B301, 90-94, (1993)
[15] Markus Q. Huber, Jens Braun, Algorithmic derivation of functional renormalization group equations and Dyson-Schwinger equations, 2011. arXiv:1112.6173 [hep-th].
[16] Synatschke, Franziska; Bergner, Georg; Gies, Holger; Wipf, Andreas, Flow equation for supersymmetric quantum mechanics, J. High Energy Phys., 03, 028, (2009), arXiv:0809.4396 [hep-th]
[17] Ellwanger, Ulrich; Hirsch, Manfred; Weber, Axel, Flow equations for the relevant part of the pure yang – mills action, Z. Phys., C69, 687-698, (1996)
[18] Pawlowski, Jan M.; Litim, Daniel F.; Nedelko, Sergei; von Smekal, Lorenz, Infrared behaviour and fixed points in Landau gauge QCD, Phys. Rev. Lett., 93, 152002, (2004)
[19] Fischer, Christian S.; Gies, Holger, Renormalization flow of yang – mills propagators, J. High Energy Phys., 10, 048, (2004)
[20] Fischer, Christian S.; Maas, Axel; Pawlowski, Jan M., On the infrared behavior of Landau gauge yang – mills theory, Ann. Physics, 324, 2408, (2009), arXiv:0810.1987 [hep-ph] · Zbl 1176.81082
[21] Blaizot, Jean-Paul; Mendez-Galain, Ramon; Wschebor, Nicolas, Non perturbative renormalization group and momentum dependence of \(n\)-point functions. II, Phys. Rev., E74, 051117, (2006) · Zbl 1247.81308
[22] Blaizot, Jean-Paul; Mendez-Galain, Ramon; Wschebor, Nicolas, Non perturbative renormalisation group and momentum dependence of \(n\)-point functions. I, Phys. Rev., E74, 051116, (2006) · Zbl 1247.81308
[23] Blaizot, J. P.; Galain, Ramon Mendez; Wschebor, Nicolas, A new method to solve the non perturbative renormalization group equations, Phys. Lett., B632, 571-578, (2006) · Zbl 1247.81308
[24] Benitez, F., Solutions of renormalization group flow equations with full momentum dependence, Phys. Rev., E80, 030103, (2009), arXiv:0901.0128 [cond-mat.stat-mech]
[25] Diehl, S.; Krahl, H. C.; Scherer, M., Three-body scattering from nonperturbative flow equations, Phys. Rev., C78, 034001, (2008), arXiv:0712.2846 [cond-mat.stat-mech]
[26] Leonard Fister, Jan M. Pawlowski, Yang-Mills correlation functions at finite temperature, 2011. arXiv:1112.5440 [hep-ph].
[31] Franziska Synatschke, Thomas Fischbacher, Georg Bergner, The two dimensional \(N = (2, 2)\) Wess-Zumino model in the functional renormalization group approach, 2010. arXiv:1006.1823 [hep-th].
[32] Markus Q. Huber, Mario Mitter, CrasyDSE: a framework for solving Dyson-Schwinger equations, 2011. arXiv:1112.5622 [hep-th]. · Zbl 1302.81004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.