×

Phylogenetic distribution of DNA-binding transcription factors in bacteria and archaea. (English) Zbl 1089.92014

Summary: We have addressed the distribution and abundance of 75 transcription factor (TF) families in complete genomes from 90 different bacterial and archaeal species. We found that the proportion of TFs increases with genome size. The deficit of TFs in some genomes might be compensated by the presence of proteins organizing and compacting DNA, such as histone-like proteins. Nine families are represented in all the bacteria and archaea we analyzed, whereas 17 families are specific to bacteria, providing evidence for regulon specialization at an early stage of evolution between the bacterial and archeal lineages. Ten of the 17 families identified in bacteria belong exclusively to the proteobacteria defining a specific signature for this taxonomical group. In bacteria, 10 families are lost mostly in intracellular pathogens and endosymbionts, while 9 families seem to have been horizontally transferred to archaea. The winged helix-turn-helix (HTH) is by far the most abundant structure (motif) in prokaryotes, and might have been the earliest HTH motif to appear as shown by its distribution and abundance in both bacterial and archaeal cellular domains. Horizontal gene transfer and lineage-specific gene losses suggest a progressive elimination of TFs in the course of archaeal and bacterial evolution. This analysis provides a framework for discussing the selective forces directing the evolution of the transcriptional machinery in prokaryotes.

MSC:

92C40 Biochemistry, molecular biology
92D10 Genetics and epigenetics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Achenbach, L. A.; Yang, W., The fur gene from Klebsiella pneumoniae: characterization, genomic organization and phylogenetic analysis, Gene, 185, 201-207 (1997)
[2] Altschul, S. F.; Madden, T. L.; Schaffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389-3402 (1997)
[3] Aramaki, H.; Yagi, N.; Suzuki, M., Residues important for the function of a multihelical DNA binding domain in the new transcription factor family of Cam and Tet repressors, Prot. Eng., 8, 1259-1266 (1995)
[4] Aravind, L.; Koonin, E. V., DNA-binding proteins and evolution of transcription regulation in the archaea, Nucleic Acids Res., 27, 4658-4670 (1999)
[5] Bairoch, A.; Apweiler, R., The SWISS-PROT protein sequence database and its supplement TrEMBL, Nucleic Acids Res., 28, 45-48 (2000)
[6] Black, D. S.; Kelly, A. J.; Mardis, M. J.; Moyed, H. S., Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis, J. Bacteriol., 173, 5732-5739 (1991)
[7] Bouhouche, N.; Syvanen, M.; Kado, C. I., The origin of prokaryotic C2H2 zinc finger regulators, Trends Microbiol., 8, 77-81 (2000)
[8] Buchet, A.; Eichler, K.; Mandrand-Berthelot, M. A., Regulation of the carnitine pathway in Escherichia coli: investigation of the cai-fix divergent promoter region, J. Bacteriol., 180, 2599-2608 (1998)
[9] Campoy, S.; Mazon, G.; Fernandez de Henestrosa, A. R.; Llagostera, M.; Monteiro, P. B.; Barbe, J., A new regulatory DNA motif of the gamma subclass proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa, Microbiology, 148, 3583-3597 (2002)
[10] Cherry, J. L., Genome size and operon content, J. Theor. Biol., 221, 401-410 (2003) · Zbl 1464.92170
[11] Collado-Vides, J.; Magasanik, B.; Gralla, J. D., Control site location and transcriptional regulation in E. coli, Microbiol. Rev., 55, 371-394 (1991)
[12] Diorio, C.; Cai, J.; Marmor, J.; Shinder, R.; DuBow, M. S., An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria, J. Bacteriol., 177, 2050-2056 (1995)
[13] Foster, J. W.; Penfound, T., The bifunctional NadR regulator of Salmonella typhimurium: location of regions involved with DNA binding, nucleotide transport and intramolecular communication, FEMS Microbiol. Lett., 112, 179-183 (1993)
[14] Frishman, D.; Mewes, H.-W., PEDANTIC Genome Analysis, Trends Genet., 13, 415-416 (1997)
[15] Gerard, F.; Dri, A. M.; Moreau, P. L., Role of Escherichia coli RpoS, LexA and H-NS global regulators in metabolism and survival under aerobic, phosphate-starvation conditions, Microbiology, 145, 1547-1562 (1999)
[16] Ghrist, A. C.; Stauffer, G. V., Promoter characterization and constitutive expression of the Escherichia coli gcvR gene, J. Bacteriol., 180, 1803-1807 (1998)
[17] Gough, J.; Karplus, K.; Hughey, R.; Chothia, C., Assignment of homology to genome sequences using a Library of Hidden Markov Models that represent all proteins of known structure, J. Mol. Biol., 313, 903-919 (2001)
[18] Gui, L.; Sunnarborg, A.; LaPorte, D. C., Regulated expression of a repressor protein: FadR activates iclR, J. Bacteriol., 178, 4704-4709 (1996)
[19] Helmann, J. D.; Wang, Y.; Mahler, I.; Walsh, C. T., Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons, J. Bacteriol., 171, 222-229 (1989)
[20] Henikoff, S.; Greene, E. A.; Pietrokovski, S.; Bork, P.; Attwood, T. K.; Hood, L., Gene families: the taxonomy of protein paralogs and chimeras, Science, 278, 609-614 (1997)
[21] Jones, D. T., Protein secondary structure prediction based on position-specific scoring matrices, J. Mol. Biol., 292, 195-202 (1999)
[22] Kajie, S.; Ideta, R.; Yamato, I.; Anraku, Y., Molecular cloning and DNA sequence of dniR, a gene affecting anaerobic expression of the Escherichia coli hexaheme nitrite reductase, FEMS Microbiol. Lett., 67, 205-211 (1991)
[23] Koonin, E. V.; Mushegian, A. R.; Galperin, M. Y.; Walker, D. R., Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea, Mol. Microbiol., 25, 619-637 (1997)
[24] Leonard, P. M.; Smits, S. H.; Sedelnikova, S. E.; Brinkman, A. B.; de Vos, W. M.; van der Oost, J.; Rice, D. W.; Rafferty, J. B., Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus, EMBO J., 20, 990-997 (2001)
[25] Li, W.; Jaroszewski, L.; Godzik, A., Tolerating some redundancy significantly speeds up clustering of large protein databases, Bioinformatics, 18, 77-82 (2002)
[26] Lopez-Garcia, P., DNA supercoiling and temperature adaptation: A clue to early diversification of life?, J. Mol. E, 49, 439-452 (1999)
[27] Madan Babu, M.; Teichmann, S. A., Evolution of transcription factors and the gene regulatory network in Escherichia coli, Nucleic Acids Res., 31, 1234-1244 (2003)
[28] Miller, M. B.; Bassler, B. L., Quorum sensing in bacteria, Annu. Rev. Microbiol., 55, 165-199 (2001)
[29] Missiakas, D.; Georgopoulos, C.; Raina, S., The Escherichia coli heat shock gene htpY: mutational analysis, cloning, sequencing, and transcriptional regulation, J. Bacteriol., 175, 2613-2624 (1993)
[30] Moreno-Hagelsieb, G.; Collado-Vides, J., Operon conservation from the point of view of Escherichia coli, and inference of functional interdependence of gene products from genome context, In Silico Biol., 2, 87-95 (2002)
[31] Napoli, A.; Van der Oost, J.; Sensen, C. W.; Charlebois, R. L.; Rossi, M.; Ciaramella, M., An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter, J. Bacteriol., 181, 1474-1480 (1999)
[32] Nguyen, C.; Saier, C. M.H., Phylogenetic, structural and functional analyses of the LacI-GalR family of bacterial transcription factors, FEBS Lett., 377, 98-102 (1995)
[33] Obokata, J.; Ohme, M.; Hayashida, N., Nucleotide sequence of a cDNA clone encoding a putative glycine-rich protein of 19.7kDa in Nicotiana sylvestris, Plant Mol. Biol., 17, 953-955 (1991)
[34] Ochman, H.; Lawrence, J. G.; Groisman, E. A., Lateral gene transfer and the nature of bacterial innovation, Nature, 405, 299-304 (2000)
[35] Odenbreit, S.; Faller, G.; Haas, R., Role of the alpAB proteins and lipopolysaccharide in adhesion of Helicobacter pylori to human gastric tissue, Int. J. Med. Microbiol., 292, 247-256 (2002)
[36] Old, I. G.; Saint Girons, I.; Richaud, C., Physical mapping of the scattered methionine genes on the Escherichia coli chromosome, J. Bacteriol., 175, 3689-3691 (1993)
[37] Pérez-Rueda, E.; Collado-Vides, J., The repertoire of DNA-binding transcriptional regulators in Escherichia coli K12, Nucleic Acids Res., 28, 1838-1847 (2000)
[38] Pérez-Rueda, E.; Collado-Vides, J., Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria, J. Mol. Evol., 53, 172-179 (2001)
[39] Rigali, S.; Derouaux, A.; Giannotta, F.; Dusart, J., Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies, J. Biol. Chem., 277, 12507-12515 (2002)
[40] Roy, S.; Sahu, A.; Adhya, S., Evolution of DNA binding motifs and operators, Gene, 285, 169-173 (2002)
[41] Salgado, H.; Gama-Castro, S.; Martinez-Antonio, A.; Diaz-Peredo, E.; Sanchez-Solano, F.; Peralta-Gil, M.; Garcia-Alonso, D.; Jimenez-Jacinto, V.; Santos-Zavaleta, A.; Bonavides-Martinez, C.; Collado-Vides, J., RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12, Nucleic Acids Res., 1, 303-306 (2004)
[42] Sato, T.; Kobayashi, Y., The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite, J. Bacteriol., 180, 1655-1661 (1998)
[43] Schell, M. A., Molecular biology of the LysR family of transcriptional regulators, Annu. Rev. Microbiol., 47, 597-626 (1993)
[44] Schnetz, K., Silencing of the Escherichia coli bgl operon by RpoS requires Crl, Microbiology, 148, 2573-2578 (2002)
[45] Sonhammer, E. L.L.; Eddy, S. R.; Durbin, R., Pfam: a comprehensive database of protein families based on seed alignments, Proteins, 28, 405-420 (1997)
[46] Sorensen, K.; Hove-Jensen, I. B., Ribose catabolism of Escherichia coli: characterization of the rpiB gene encoding ribose phosphate isomerase B and of the rpiR gene, which is involved in regulation of rpiB expression, J. Bacteriol., 178, 1003-1011 (1996)
[47] Tatusova, T. A.; Karsch-Mizrachi, I.; Ostell, J. A., Complete genomes in WWW Entrez: data representation and analysis, Bioinformatics, 15, 536-543 (1999)
[48] Thompson, J. D.; Higgins, D. G.; Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, 4673-4680 (1994)
[49] Tobes, R.; Ramos, J. L., AraC-XylS database: a family of positive transcriptional regulators in bacteria, Nucleic Acids Res., 30, 318-321 (2002)
[50] Weickert, M. J.; Adhya, S. A., The family of bacterial regulators homologous to Gal and Lac repressors, J. Biol. Chem., 267, 15869-15877 (1992)
[51] Wilson, K. P.; Shewchuk, L. M.; Brennan, R. G.; Otsuka, A. J.; Matthews, B. W., Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains, Proc. Natl. Acad. Sci., 89, 9257-9261 (1992)
[52] Wu, W. F.; Urbanowski, M. L.; Stauffer, G. V., MetJ-mediated regulation of the Salmonella typhimurium metE and metR genes occurs through a common operator region, FEMS Microbiol. Lett., 108, 145-150 (1993)
[53] Yamada, M.; Saier, M. H., Positive and negative regulators for glucitol gut operon expression in Escherichia coli, J. Mol. Biol., 203, 569-583 (1988)
[54] Yanai, I.; Camacho, C. J.; DeLisi, C., Predictions of gene family distributions in microbial genomes: evolution by gene duplication and modification, Phys. Rev. Lett., 85, 2641-2644 (2000)
[55] Yang, W.; Ni., L.; Somerville, R. L., A stationary-phase protein of Escherichia coli that affects the mode of association between the trp repressor protein and operator-bearing DNA, Proc. Natl. Acad. Sci. U.S.A., 90, 5796-5800 (1993)
[56] Zeng, Q.; Stalhandske, C.; Anderson, M. C.; Scott, R. A.; Summers, A. O., The core metal-recognition domain of MerR, Biochemistry, 37, 15885-15895 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.