×

Conservative and entropy controlled remap for multi-material ALE simulations with space-staggered schemes. (English) Zbl 1452.76096

Summary: The remapping strategy is crucial in any Arbitrary Lagrangian-Eulerian (ALE) algorithm based on a Lagrange-plus-remap paradigm. This step is particularly challenging for space-staggered schemes since inconsistencies may appear between cell centered and node centered fields after remap if no special care is taken. We propose here a space-staggered remapping strategy focusing on conservation properties and entropy control. The proposed algorithm conserves mass, total energy and respects the Second Law of Thermodynamics (for robustness) up to round-off errors. This is achieved at a low computational cost by introducing a consistent, explicit and local post processing of the linear momentum after remap. This new method is then analyzed showing that the strict momentum conservation is sacrificed. It is now conserved to the scheme’s order, such as entropy. Other classical properties such that the “DeBar consistency” [R. B. DeBar, Fundamentals of the KRAKEN Code. Report UCIR-760 (1974)], the continuity with the Lagrangian step and the monotonicity are also discussed. This work is developed in the context of the intersection-based (or overlay-based) remap. Therefore, the rezoned mesh does not have to be close to the Lagrangian one and, even if it is not considered here, our study can be easily extended to rezoning strategies which modify the mesh connectivity.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

ReALE; KRAKEN
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Owen, J. M.; Shashkov, M., Arbitrary-Lagrangian-Eulerian remap treatments consistent with staggered compatible total energy conserving Lagrangian methods, J. Comput. Phys., 273, 520 (2014) · Zbl 1351.76221
[2] Kucharik, M.; Shashkov, M., Conservative multi-material remap for staggered multi-material Arbitrary Lagrangian Eulerian methods, J. Comput. Phys., 258, 268 (2014) · Zbl 1349.76493
[3] Starinshak, D. P.; Owen, J. M., A subzone reconstruction algorithm for efficient staggered compatible remapping, J. Comput. Phys., 296, 263 (2015) · Zbl 1352.76076
[4] DeBar, R. B., Fundamentals of the KRAKEN Code (1974), LLNL, Report UCIR-760
[5] Wilkins, M., Calculation of elastic – plastic flow, (Alder, B. J.; Fernbach, S.; Rotenberg, M., Fundamental Methods in Hydrodynamics. Fundamental Methods in Hydrodynamics, Methods in Computational Physics: Advances in Research and Applications, vol. 3 (1964), Academic Press), 211
[6] Maire, P. H.; Abgrall, R.; Breil, J.; Loubère, R.; Rebourcet, B., A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two dimensional unstructured grids, J. Comput. Phys., 235, 626 (2013) · Zbl 1291.74186
[7] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An Arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys., 135, 203 (1974) · Zbl 0938.76068
[8] Barlow, A. J.; Maire, P. H.; Rider, W. J.; Rieben, R. N.; Shashkov, M. J., Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multi-material flows, J. Comput. Phys., 322, 603 (2016) · Zbl 1351.76093
[9] Margolin, L. G., Arbitrary Lagrangian-Eulerian (ALE) Methods a Personal Perspective (2013), LANL, Report LA-UR-13-24124
[10] Boscheri, W.; Dumbser, M., A direct Arbitrary Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, J. Comput. Phys., 275, 484 (2014) · Zbl 1349.76310
[11] Vazquez-Gonzalez, T.; Llor, A.; Fochesato, C., A novel GEEC (Geometry, Energy, and Entropy Compatible) procedure applied to a staggered direct-ALE scheme for hydrodynamics, Eur. J. Mech. B, Fluids, 65, 494 (2016) · Zbl 1408.76395
[12] Hauret, P.; Le Tallec, P., Conservation Analysis for Integration Schemes in Quasi-Incompressible Elastodynamics (2002), École Polytechnique CMAP, Internal Report 499
[13] Hauret, P.; Le Tallec, P., Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Eng., 195, 4783 (2006) · Zbl 1177.74379
[14] Burton, D. E.; Morgan, N. R.; Carney, T. C.; Kenamond, M., Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR), J. Comput. Phys., 299, 229 (2015) · Zbl 1351.76099
[15] Kenamond, M.; Bement, M.; Shashkov, M., Compatible total energy conserving and symmetry preserving Arbitrary Lagrangian Eulerian hydrodynamics in 2D rz-cylindrical coordinates, J. Comput. Phys., 268, 154 (2014) · Zbl 1349.76771
[16] Starinshak, D. P.; Owen, J. M., A multi-material extension to subzonal reconstruction, J. Comput. Phys., 313, 594 (2016) · Zbl 1349.76646
[17] Loubère, R.; Shashkov, M. J., A subcell remapping method on staggered polygonal grids for Arbitrary Lagrangian Eulerian methods, J. Comput. Phys., 209, 1, 205 (2005) · Zbl 1329.76236
[18] Bailey, D.; Berndt, M.; Kucharik, M.; Shashkov, M., Reduced-dissipation remapping of velocity in staggered Arbitrary Lagrangian Eulerian methods, Comput. Appl. Math., 233, 12, 3148 (2010) · Zbl 1252.76059
[19] Bailey, D., Second-Order Monotonic Advection in LASNEX, 3-57 (1984), Laser Program Annual Report’84, Report UCRL-50021-84
[20] Margolin, L. G.; Shashkov, M., Remapping, recovery and repair on a staggered grid, Comput. Methods Appl. Mech. Eng., 193, 39, 4139 (2004) · Zbl 1068.76058
[21] Loubère, R.; Staley, M.; Wendroff, B., The repair paradigm: new algorithms and applications to compressible flow, J. Comput. Phys., 211, 385 (2006) · Zbl 1138.76406
[22] Shashkov, M.; Wendroff, B., The repair paradigm and application to conservation laws, J. Comput. Phys., 198, 265 (2004) · Zbl 1107.65341
[23] Anderson, R.; Dobrev, V.; Kolev, T.; Rieben, R., Monotonicity in high-order curvilinear finite element ALE remap, Int. J. Numer. Methods Fluids, 77, 249 (2015)
[24] A. Claisse, P. Le Tallec, A. Llor, A. Marboeuf, Reducing mesh distortions and asymmetries in space-staggered Lagrangian hydro-schemes: variable node masses and inertial filtering, in preparation.; A. Claisse, P. Le Tallec, A. Llor, A. Marboeuf, Reducing mesh distortions and asymmetries in space-staggered Lagrangian hydro-schemes: variable node masses and inertial filtering, in preparation.
[25] Marboeuf, A., Schémas ALE multi-matériaux totalement conservatifs pour l’hydrodynamique (2018), Université Paris-Saclay, PhD thesis, CEA
[26] A. Claisse, A. Llor, C. Fochesato, Further exploration of the Lagrangian CSTS (Conservative Space- and Time-Staggered) hydrodynamic scheme, in: Oral Talk, Europ. Conf. Comput. Fluid Dynamics (ECFD VI), Barcelona, July 20th-25th, 2014.; A. Claisse, A. Llor, C. Fochesato, Further exploration of the Lagrangian CSTS (Conservative Space- and Time-Staggered) hydrodynamic scheme, in: Oral Talk, Europ. Conf. Comput. Fluid Dynamics (ECFD VI), Barcelona, July 20th-25th, 2014. · Zbl 1351.76171
[27] A. Claisse, A. Marboeuf, P. Le Tallec, A. Llor, Conservative axisymmetric space- and time-staggered hydrodynamic schemes, in: Oral Talk, Int. Conf. Num. Meth. Multi-Material Fluid Flow, Wurzburg, September 7th-11th, 2015.; A. Claisse, A. Marboeuf, P. Le Tallec, A. Llor, Conservative axisymmetric space- and time-staggered hydrodynamic schemes, in: Oral Talk, Int. Conf. Num. Meth. Multi-Material Fluid Flow, Wurzburg, September 7th-11th, 2015.
[28] Burton, D. E., Exact conservation of energy and momentum in staggered-grid hydrodynamics with arbitrary connectivity, Lect. Notes Phys., 395, 7 (1991)
[29] Llor, A.; Claisse, A.; Fochesato, C., Energy preservation and entropy in Lagrangian space- and time-staggered hydrodynamic schemes, J. Comput. Phys., 309, 324 (2016) · Zbl 1351.76171
[30] A. Marboeuf, C. Claisse P. Le Tallec, A. Llor, Theoretical and numerical studies of entropy production in axisymmetric geometry for Lagrangian CSTS hydrodynamic schemes, in: Poster, Int. Conf. Num. Meth. Multi-Material Fluid Flow, Wurzburg, September 7th-11th, 2015.; A. Marboeuf, C. Claisse P. Le Tallec, A. Llor, Theoretical and numerical studies of entropy production in axisymmetric geometry for Lagrangian CSTS hydrodynamic schemes, in: Poster, Int. Conf. Num. Meth. Multi-Material Fluid Flow, Wurzburg, September 7th-11th, 2015.
[31] Dukowicz, J. K.; Kodis, J. W., Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations, SIAM J. Sci. Stat. Comput., 8, 305 (1987) · Zbl 0644.76085
[32] VanLeer, B., Towards the ultimate conservative difference scheme, J. Comput. Phys., 32, 101 (1979) · Zbl 1364.65223
[33] Youngs, D. L., Time dependent multi-material flow with large fluid distortion, (Morton, K. W.; Barnes, M. J., Numerical Methods for Fluid Dynamic (1982), Academic Press), 273 · Zbl 0537.76071
[34] Kucharik, M.; Garimella, R. V.; Schofield, S. P.; Shashkov, M. J., A comparative study of interface reconstruction methods for multi-material ALE simulations, J. Comput. Phys., 229, 2432 (2010) · Zbl 1423.76343
[35] Scardovelli, R.; Zaleski, S., Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection, Int. J. Numer. Methods Fluids, 41, 251 (2003) · Zbl 1047.76080
[36] Diot, S.; Francois, M. M.; Dendy, E. D., An interface reconstruction method based on analytical formulae for 2D planar and axisymmetric arbitrary convex cells, J. Comput. Phys., 275, 53 (2014) · Zbl 1349.76600
[37] Van Renterghem, E., CEA (1999), Internal Report
[38] Vazquez-Gonzalez, T.; Llor, A., CEA (2013), Internal Report
[39] Wilchinsky, A. V.; Hutter, K., On thermodynamic consistency of turbulent closures, Theor. Comput. Fluid Dyn., 15, 23 (2001) · Zbl 1028.76015
[40] Roe, P. L.; Lung, T. B.; Maeng, J., New approaches to limiting, (22nd AIAA Comput. Fluid Dynamics Conference (2015))
[41] Bakhrakh, S. M.; Spiridonov, V. F.; Shanin, A. A., Method for calculating gasdynamic flows of an inhomogeneous medium in Lagrange-Euler variables, Akad. Nauk SSSR Dokl., 276 (1984) · Zbl 0593.76082
[42] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 23 (1992) · Zbl 0763.73052
[43] Pracht, W. E., Calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computing mesh, J. Comput. Phys., 17, 132 (1975) · Zbl 0294.76016
[44] Caramana, E. J.; Whalen, P. P., Numerical preservation of symmetry properties of continuum problems, J. Comput. Phys., 141, 174 (1998) · Zbl 0933.76066
[45] Kolsky, H. G., A Method for the Numerical Solution of Transient Hydrodynamic Shock Problems in Two Space Dimensions (1955), LANL, Report LA-1867
[46] Jun, B.-I., A Modified Equipotential Method for Grid Relaxation (2000), LLNL, Report UCRL-JC-138277
[47] Liska, R.; Shashkov, M.; Vachal, P.; Wendroff, B., Optimization-based synchronized flux-corrected conservative interpolation (remapping) of mass and momentum for arbitrary Lagrangian-Eulerian methods, J. Comput. Phys., 229, 5 (2010) · Zbl 1329.76269
[48] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1 (1978) · Zbl 0387.76063
[49] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (1998), Springer), 325-432 · Zbl 0927.65111
[50] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J. Comput. Phys., 150, 1 (1999) · Zbl 0926.65090
[51] Yee, H. C.; Sandham, N. D.; Djomehri, M. J., Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys., 150, 1 (1999) · Zbl 0936.76060
[52] Boscheri, W.; Dumbser, M., A direct Arbitrary Lagrangian Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, J. Comput. Phys., 275 (2014) · Zbl 1349.76310
[53] Sedov, L. I., Similarity and Dimensional Methods in Mechanics (1959), Academic Press: Academic Press New York · Zbl 0121.18504
[54] Kamm, J. R., Evaluation of the Sedov – von Neumann-Taylor Blast Wave Solution (2000), LANL, Report LA-UR-00-6055
[55] Kamm, J. R.; Timmes, F. X., On Efficient Generation of Numerically Robust Sedov Solutions (2007), LANL, Report LA-UR-07-2849
[56] Galera, S.; Maire, P.-H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J. Comput. Phys., 229, 16 (2010) · Zbl 1346.76105
[57] Breil, J., Numerical Methods for Lagrangian and Arbitrary-Lagrangian-Eulerian Hydrodynamic Contribution to the Simulation of High-Energy-Density-Physics Problems (2016), Université de Bordeaux, Habilitation à diriger des recherches
[58] Haas, J.-F.; Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid Mech., 181 (1987)
[59] Quirk, J.; Karni, S., On the dynamics of a shock – bubble interaction, J. Fluid Mech., 318 (1996) · Zbl 0877.76046
[60] Loubère, R.; Maire, P.-H.; Shashkov, M.; Breil, J.; Galera, S., ReALE: a reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys., 229, 12 (2010) · Zbl 1305.76067
[61] Del Pino, S., Metric-based mesh adaptation for 2D Lagrangian compressible flows, J. Comput. Phys., 230, 5 (2011) · Zbl 1391.76536
[62] von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 232 (1950) · Zbl 0037.12002
[63] Landshoff, R., A Numerical Method for Treating Fluid Flow in the Presence of Shocks (1955), LANL, Report LA-1930
[64] Kurapatenko, V. F., Difference Methods for Solutions of Problems of Mathematical Physics (1966), American Mathematical Society: American Mathematical Society Providence, RI
[65] Wilkins, M. L., Use of artificial viscosity in multidimensional fluid dynamic calculations, J. Comput. Phys., 36, 281 (1980) · Zbl 0436.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.