×

Urban planning image feature enhancement and simulation based on partial differential equation method. (English) Zbl 1520.68208

MSC:

68U10 Computing methodologies for image processing
35Q68 PDEs in connection with computer science
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

MOOSE; CutFEM; Strands; DGM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bueno-Orovio, A.; Perez-Garcia, V. M.; Fenton, F. H., Spectral methods for partial differential equations in irregular domains: the spectral smoothed boundary method, SIAM Journal on Scientific Computing, 28, 3, 886-900 (2006) · Zbl 1114.65119 · doi:10.1137/040607575
[2] Bertalmío, M.; Cheng, L.-T.; Osher, S.; Sapiro, G., Variational problems and partial differential equations on implicit surfaces, Journal of Computational Physics, 174, 2, 759-780 (2021) · Zbl 0991.65055 · doi:10.1006/jcph.2001.6937
[3] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.; Massing, A., CutFEM: discretizing geometry and partial differential equations, International Journal for Numerical Methods in Engineering, 104, 7, 472-501 (2019) · Zbl 1352.65604 · doi:10.1002/nme.4823
[4] Sirignano, J.; Spiliopoulos, K., DGM: a deep learning algorithm for solving partial differential equations, Journal of Computational Physics, 375, 1339-1364 (2018) · Zbl 1416.65394 · doi:10.1016/j.jcp.2018.08.029
[5] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378, 686-707 (2019) · Zbl 1415.68175 · doi:10.1016/j.jcp.2018.10.045
[6] Oberkampf, W. L.; DeLand, S. M.; Rutherford, B. M.; Diegert, K. V.; Alvin, K. F., Error and uncertainty in modeling and simulation, Reliability Engineering & System Safety, 75, 3, 333-357 (2018) · doi:10.1016/S0951-8320(01)00120-X
[7] Gaston, D.; Newman, C.; Hansen, G.; Lebrun-Grandie, D., MOOSE: a parallel computational framework for coupled systems of nonlinear equations, Nuclear Engineering and Design, 239, 10, 1768-1778 (2019) · doi:10.1016/j.nucengdes.2009.05.021
[8] Lu, W.; Chen, M. L.; Olivera, G. H.; Ruchala, K. J.; Mackie, T. R., Fast free-form deformable registration via calculus of variations, Physics in Medicine & Biology, 49, 14, 3067 (2019)
[9] Yu, Y.; Acton, S. T., Speckle reducing anisotropic diffusion, IEEE Transactions on Image Processing, 11, 11, 1260-1270 (2002) · doi:10.1109/TIP.2002.804276
[10] Settles, G. S.; Covert, E. E., Schlieren and shadowgraph techniques: visualizing phenomena in transport media, Applied Mechanics Reviews, 55, 4, B76-B77 (2019)
[11] Matthies, H. G.; Keese, A., Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering, 194, 12-16, 1295-1331 (2005) · Zbl 1088.65002 · doi:10.1016/j.cma.2004.05.027
[12] Torquato, S.; Haslach, H. W., Random heterogeneous materials: microstructure and macroscopic properties, Applied Mechanics Reviews, 55, 4, B62-B63 (2020) · doi:10.1115/1.1483342
[13] Naghavi, Z.; Moheb, A.; Ziaei-Rad, S., Numerical simulation of rough rice drying in a deep-bed dryer using non-equilibrium model, Energy Conversion and Management, 51, 2, 258-264 (2018) · doi:10.1016/j.enconman.2009.09.019
[14] Evans, L. C., Partial differential equations and Monge-Kantorovich mass transfer, Current Developments in Mathematics, 1997, 1, 65-126 (2017) · Zbl 0954.35011 · doi:10.4310/cdm.1997.v1997.n1.a2
[15] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, Journal of Computational Physics, 53, 3, 484-512 (2019) · Zbl 0536.65071 · doi:10.1016/0021-9991(84)90073-1
[16] Pai, D. K., Strands: interactive simulation of thin solids using Cosserat models, Computer Graphics Forum, 21, 3, 347-352 (2020) · doi:10.1111/1467-8659.00594
[17] Huo, C. H.; Chai, L. H., Physical principles and simulations on the structural evolution of eco-industrial systems, Journal of Cleaner Production, 16, 18, 1995-2005 (2018) · doi:10.1016/j.jclepro.2008.02.013
[18] Helbing, D.; Hennecke, A.; Shvetsov, V.; Treiber, M., MASTER: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model, Transportation Research Part B: Methodological, 35, 2, 183-211 (2021) · doi:10.1016/s0191-2615(99)00047-8
[19] Lindgren, F.; Rue, H.; Lindström, J., An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73, 4, 423-498 (2011) · Zbl 1274.62360 · doi:10.1111/j.1467-9868.2011.00777.x
[20] Rozza, G.; Huynh, D. B. P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Archives of Computational Methods in Engineering, 15, 3 (2007) · Zbl 1304.65251 · doi:10.1007/bf03024948
[21] Ronchi, C.; Iacono, R.; Paolucci, P. S., The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry, Journal of Computational Physics, 124, 1, 93-114 (1996) · Zbl 0849.76049 · doi:10.1006/jcph.1996.0047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.