×

A structure preserving Lanczos algorithm for computing the optical absorption spectrum. (English) Zbl 1391.65089

Summary: We present a new structure preserving Lanczos algorithm for approximating the optical absorption spectrum in the context of solving the full Bethe-Salpeter equation without Tamm-Dancoff approximation. The new algorithm is based on a structure preserving Lanczos procedure, which exploits the special block structure of Bethe-Salpeter Hamiltonian matrices. A recently developed technique of generalized averaged Gauss quadrature is incorporated to accelerate the convergence. We also establish the connection between our structure preserving Lanczos procedure with several existing Lanczos procedures developed in different contexts. Numerical examples are presented to demonstrate the effectiveness of our Lanczos algorithm.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F60 Numerical computation of matrix exponential and similar matrix functions
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Z. Bai and R.-C. Li, {\it Minimization principles for the linear response eigenvalue problem II: Computation}, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 392-416, . · Zbl 1311.65102
[2] S. Baroni, R. Gebauer, and O. B. Malc\ioǧlu, {\it Harnessing molecular excited states with Lanczos chains}, J. Phys. Condens. Matter, 22 (2010), 074204, .
[3] P. Benner, S. Dolgov, V. Khoromskaia, and B. N. Khoromskij, {\it Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation}, J. Comput. Phys., 334 (2017), pp. 221-239, . · Zbl 1376.65045
[4] P. Benner and H. Fassbender, {\it An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem}, Linear Algebra Appl., 263 (1997), pp. 75-111, . · Zbl 0884.65028
[5] P. Benner, H. Fassbender, and C. Yang, {\it Some remarks on the complex \(J\)-symmetric eigenproblem}, Linear Algebra Appl., 544 (2018), pp. 407-442, . · Zbl 1392.65086
[6] P. Benner and A. Salam, {\it The symplectic Lanczos process for Hamiltonian-positive matrices}, preprint, 2011.
[7] J. Brabec, L. Lin, M. Shao, N. Govind, Y. Saad, C. Yang, and E. G. Ng, {\it Efficient algorithms for estimating the absorption spectrum within linear response TDDFT}, J. Chem. Theory Comput., 11 (2015), pp. 5197-5208, .
[8] S. M. Dancoff, {\it Non-adiabatic meson theory of nuclear forces}, Phys. Rev., 78 (1950), pp. 382-385, . · Zbl 0036.27303
[9] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, {\it BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures}, Comput. Phys. Commun., 183 (2012), pp. 1269-1289, .
[10] G. H. Golub and G. Meurant, {\it Matrices, moments and quadrature}, in Numerical Analysis 1993, D. F. Griffith and G. A. Watson, eds., Pitman Res. Notes Math. 303, Longman, Essex, UK, 1994, pp. 105-156. · Zbl 0795.65019
[11] G. H. Golub and G. Meurant, {\it Matrices, Moments and Quadrature with Applications}, Princeton University Press, Princeton, NJ, 2010. · Zbl 1217.65056
[12] M. Grüning, A. Marini, and X. Gonze, {\it Exciton-plasmon states in nanoscale materials: Breakdown of the Tamm-Dancoff approximation}, Nano Lett., 9 (2009), pp. 2820-2824, .
[13] M. Grüning, A. Marini, and X. Gonze, {\it Implementation and testing of Lanczos-based algorithms for random-phase approximation eigenproblems}, Comput. Mater. Sci., 50 (2011), pp. 2148-2156, .
[14] R. Haydock, {\it The recursive solution of the Schrödinger equation}, Solid State Phys., 35 (1980), pp. 215-294, .
[15] O. B. Malc\ioǧlu, R. Gebauer, D. Rocca, and S. Baroni, {\it turboTDDFT–A code for the simulation of molecular spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory}, Comput. Phys. Commun., 182 (2011), pp. 1744-1754, . · Zbl 1259.82006
[16] Y. Ping, D. Rocca, and G. Galli, {\it Electronic excitations in light absorbers for photoelectrochemical energy conversion: First principles calculations based on many body perturbation theory}, Chem. Soc. Rev., 42 (2013), pp. 2437-2469, .
[17] Y. Ping, D. Rocca, D. Lu, and G. Galli, {\it{\it Ab initio} calculations of absorption spectra of semiconducting nanowires within many-body perturbation theory}, Phys. Rev. B, 85 (2012), 035316, .
[18] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, {\it Optical spectrum of \(MoS_2\): Many-body effects and diversity of exciton states}, Phys. Rev. Lett., 111 (2013), 216805, .
[19] L. Reichel, M. M. Spalević, and T. Tang, {\it Generalized averaged Gauss quadrature rules for the approximation of matrix functionals}, BIT, 56 (2016), pp. 1045-1067, . · Zbl 1352.65089
[20] D. Rocca, Z. Bai, R.-C. Li, and G. Galli, {\it A block variational procedure for the iterative diagonalization of non-Hermitian random-phase approximation matrices}, J. Chem. Phys, 136 (2012), 034111, .
[21] D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, {\it Turbo charging time-dependent density-functional theory with Lanczos chains}, J. Chem. Phys, 128 (2008), 154105, .
[22] D. Rocca, D. Lu, and G. Galli, {\it Ab initio calculations of optical absorption spectra: Solution of the Bethe-Salpeter equation within density matrix perturbation theory}, J. Chem. Phys, 133 (2010), 164109, .
[23] D. Rocca, Y. Ping, R. Gebauer, and G. Galli, {\it Solution of the Bethe-Salpeter equation without empty electronic states: Application to the absorption spectra of bulk systems}, Phys. Rev. B, 85 (2012), 045116, .
[24] D. Rocca, M. Vörös, A. Gali, and G. Galli, {\it Ab initio optoelectronic properties of silicon nanoparticles: Excitation energies, sum rules, and Tamm-Dancoff approximation}, J. Chem. Theory Comput., 10 (2014), pp. 3290-3298, .
[25] M. Rohlfing and S. G. Louie, {\it Electron-hole excitations and optical spectra from first principles}, Phys. Rev. B, 62 (2000), pp. 4927-4944, .
[26] E. E. Salpeter and H. A. Bethe, {\it A relativistic equation for bounded-state problems}, Phys. Rev., 84 (1951), pp. 1232-1242, . · Zbl 0044.43103
[27] M. Shao, F. H. da Jornada, C. Yang, J. Deslippe, and S. G. Louie, {\it Structure preserving parallel algorithms for solving the Bethe-Salpeter eigenvalue problem}, Linear Algebra Appl., 488 (2016), pp. 148-167, . · Zbl 1330.65059
[28] M. Shao and C. Yang, {\it BSEPACK User’s Guide}, arXiv:1612.07848, 2016.
[29] M. Shao and C. Yang, {\it Properties of definite Bethe-Salpeter eigenvalue problems}, in Eigenvalue Problems: Algorithms, Software and Applications, in Petascale Computing, T. Sakurai, S.-L. Zhang, T. Imamura, Y. Yamamoto, Y. Kuramashi, and T. Hoshi, eds., Lect. Notes Comput. Sci. Eng. 117, Springer-Verlag, Berlin, 2017, pp. 91-105, .
[30] M. M. Spalević, {\it On generalized averaged Gaussian formulas}, Math. Comp., 76 (2007), pp. 1483-1492, . · Zbl 1113.65025
[31] G. Strinati, {\it Application of the Green’s functions method to the study of the optical properties of semiconductors}, La Rivista del Nuovo Cimento, 11 (1988), pp. 1-86.
[32] I. Y. Tamm, {\it Relativistic interaction of elementary particles}, J. Phys. (USSR), 9 (1945), pp. 449-460.
[33] Z. Teng and R.-C. Li, {\it Convergence analysis of Lanczos-type methods for the linear response eigenvalue problem}, J. Comput. Appl. Math., 247 (2013), pp. 17-33, . · Zbl 1279.65040
[34] I. Timrov, N. Vast, R. Gebauer, and S. Baroni, {\it Electron energy loss and inelastic x-ray scattering cross sections from time-dependent density-functional perturbation theory}, Phys. Rev. B, 88 (2013), 064301, . · Zbl 1360.81022
[35] I. Timrov, N. Vast, R. Gebauer, and S. Baroni, {\it turboEELS–A code for the simulation of the electron energy loss and inelastic X-ray scattering spectra using the Liouville-Lanczos approach to time-dependent density-functional perturbation theory}, Comput. Phys. Commun., 196 (2015), pp. 460-469, . · Zbl 1360.81022
[36] E. Vecharynski, J. Brabec, M. Shao, N. Govind, and C. Yang, {\it Efficient block preconditioned eigensolvers for linear response time-dependent density functional theory}, Comput. Phys. Commun., 221 (2017), pp. 42-52, . · Zbl 07622867
[37] B. Walker, A. M. Saitta, R. Gebauer, and S. Baroni, {\it Efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy}, Phys. Rev. Lett., 96 (2006), 113001, .
[38] D. S. Watkins, {\it On Hamiltonian and symplectic Lanczos processes}, Linear Algebra Appl., 385 (2004), pp. 23-45, . · Zbl 1062.65047
[39] R. Zimmermann, {\it Influence of the non-Hermitian splitting terms on exciontic spectra}, Phys. Stat. Sol., 41 (1970), pp. 23-43, .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.