×

Superradiance in string theory. (English) Zbl 1485.83085

Summary: We perform an extensive analysis of the statistics of axion masses and interactions in compactifications of type IIB string theory, and we show that black hole superradiance excludes some regions of Calabi-Yau moduli space. Regardless of the cosmological model, a theory with an axion whose mass falls in a superradiant band can be probed by the measured properties of astrophysical black holes, unless the axion self-interaction is large enough to disrupt formation of a condensate. We study a large ensemble of compactifications on Calabi-Yau hypersurfaces, with \(1 \leq h^{1,1} \leq 491\) closed string axions, and determine whether the superradiance conditions on the masses and self-interactions are fulfilled. The axion mass spectrum is largely determined by the Kähler parameters, for mild assumptions about the contributing instantons, and takes a nearly-universal form when \(h^{1,1} \gg 1\). When the Kähler moduli are taken at the tip of the stretched Kähler cone, the fraction of geometries excluded initially grows with \(h^{1,1}\), to a maximum of \(\approx 0.5\) at \(h^{1,1} \approx 160\), and then falls for larger \(h^{1,1}\). Further inside the Kähler cone, the superradiance constraints are far weaker, but for \(h^{1,1} \gg 100\) the decay constants are so small that these geometries may be in tension with astrophysical bounds, depending on the realization of the Standard Model.

MSC:

83C57 Black holes
83C56 Dark matter and dark energy
83F05 Relativistic cosmology
83E30 String and superstring theories in gravitational theory
81V25 Other elementary particle theory in quantum theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
53E30 Flows related to complex manifolds (e.g., Kähler-Ricci flows, Chern-Ricci flows)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arvanitaki, Asimina; Dimopoulos, Savas; Dubovsky, Sergei; Kaloper, Nemanja; March-Russell, John, String Axiverse, Phys. Rev. D, 81 (2010) · doi:10.1103/PhysRevD.81.123530
[2] Witten, Edward, Some Properties of O(32) Superstrings, Phys. Lett. B, 149, 351-356 (1984) · doi:10.1016/0370-2693(84)90422-2
[3] Svrcek, Peter; Witten, Edward, Axions In String Theory, JHEP, 06, 051 (2006) · doi:10.1088/1126-6708/2006/06/051
[4] Conlon, Joseph P., The QCD axion and moduli stabilisation, JHEP, 05, 078 (2006) · doi:10.1088/1126-6708/2006/05/078
[5] Marsh, David J. E., Axion Cosmology, Phys. Rept., 643, 1-79 (2016) · doi:10.1016/j.physrep.2016.06.005
[6] Demirtas, Mehmet; Long, Cody; McAllister, Liam; Stillman, Mike, The Kreuzer-Skarke Axiverse, JHEP, 04, 138 (2020) · doi:10.1007/JHEP04(2020)138
[7] Acharya, Bobby Samir; Bobkov, Konstantin; Kumar, Piyush, An M Theory Solution to the Strong CP Problem and Constraints on the Axiverse, JHEP, 11, 105 (2010) · Zbl 1294.81148 · doi:10.1007/JHEP11(2010)105
[8] Cicoli, Michele; Goodsell, Mark; Ringwald, Andreas, The type IIB string axiverse and its low-energy phenomenology, JHEP, 10, 146 (2012) · Zbl 1397.83137 · doi:10.1007/JHEP10(2012)146
[9] Kim, Jihn E., Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept., 150, 1-177 (1987) · doi:10.1016/0370-1573(87)90017-2
[10] Bauer, Martin; Neubert, Matthias; Thamm, Andrea, Collider Probes of Axion-Like Particles, JHEP, 12, 044 (2017) · doi:10.1007/JHEP12(2017)044
[11] Abbott, L. F.; Sikivie, P.; Srednicki, M. A., A Cosmological Bound on the Invisible Axion, Phys. Lett. B, 120, 133-136 (1983) · doi:10.1016/0370-2693(83)90638-X
[12] Dine, Michael; Fischler, Willy; Srednicki, M. A., The Not So Harmless Axion, Phys. Lett. B, 120, 137-141 (1983) · doi:10.1016/0370-2693(83)90639-1
[13] Preskill, John; Wise, Mark B.; Wilczek, Frank; Srednicki, M. A., Cosmology of the Invisible Axion, Phys. Lett. B, 120, 127-132 (1983) · doi:10.1016/0370-2693(83)90637-8
[14] Berezhiani, Z. G.; Sakharov, A. S.; Khlopov, M. Yu., Primordial background of cosmological axions, Sov. J. Nucl. Phys., 55, 1063-1071 (1992)
[15] Coughlan, G. D.; Fischler, W.; Kolb, Edward W.; Raby, S.; Ross, Graham G., Cosmological Problems for the Polonyi Potential, Phys. Lett. B, 131, 59-64 (1983) · doi:10.1016/0370-2693(83)91091-2
[16] Hlozek, Renée; Grin, Daniel; Marsh, David J. E.; Ferreira, Pedro G., A search for ultralight axions using precision cosmological data, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.103512
[17] Hlozek, Renée; Marsh, David J. E.; Grin, Daniel, Using the Full Power of the Cosmic Microwave Background to Probe Axion Dark Matter, Mon. Not. Roy. Astron. Soc., 476, 3063-3085 (2018) · doi:10.1093/mnras/sty271
[18] Grin, Daniel; Amin, Mustafa A.; Gluscevic, Vera; Hlozek, Renée; Marsh, David J. E.; Poulin, Vivian, Gravitational probes of ultra-light axions (2019)
[19] Freese, Katherine; Frieman, Joshua A.; Olinto, Angela V., Natural inflation with pseudo - Nambu-Goldstone bosons, Phys. Rev. Lett., 65, 3233-3236 (1990) · doi:10.1103/PhysRevLett.65.3233
[20] Baumann, Daniel; McAllister, Liam, Inflation and String Theory (2015), Cambridge University Press · Zbl 1339.83003
[21] Cicoli, Michele; De Alwis, Senarath; Maharana, Anshuman; Muia, Francesco; Quevedo, Fernando, De Sitter vs Quintessence in String Theory, Fortsch. Phys., 67 (2019) · Zbl 07762667 · doi:10.1002/prop.201800079
[22] Copeland, Edmund J.; Sami, M.; Tsujikawa, Shinji, Dynamics of dark energy, Int. J. Mod. Phys. D, 15, 1753-1936 (2006) · Zbl 1203.83061 · doi:10.1142/S021827180600942X
[23] Penrose, R.; Floyd, R. M., Extraction of rotational energy from a black hole, Nature, 229, 177-179 (1971) · doi:10.1038/physci229177a0
[24] Press, William H.; Teukolsky, Saul A., Floating Orbits, Superradiant Scattering and the Black-hole Bomb, Nature, 238, 211-212 (1972) · doi:10.1038/238211a0
[25] Arvanitaki, Asimina; Dubovsky, Sergei, Exploring the String Axiverse with Precision Black Hole Physics, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.044026
[26] Brito, Richard; Cardoso, Vitor; Pani, Paolo, Black holes as particle detectors: evolution of superradiant instabilities, Class. Quant. Grav., 32 (2015) · Zbl 1327.83140 · doi:10.1088/0264-9381/32/13/134001
[27] Brito, Richard; Cardoso, Vitor; Pani, Paolo, Superradiance: New Frontiers in Black Hole Physics, Lect. Notes Phys., 906, pp.1-237 (2015) · doi:10.1007/978-3-319-19000-6
[28] Candelas, P.; Horowitz, Gary T.; Strominger, Andrew; Witten, Edward, Vacuum Configurations for Superstrings, Nucl. Phys. B, 258, 46-74 (1985) · doi:10.1016/0550-3213(85)90602-9
[29] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2 — Loop amplitudes, anomalies and phenomenology, Cambridge University Press (1987). · Zbl 0619.53002
[30] K. Becker, M. Becker and J.H. Schwarz, String Theory and M-Theory, Cambridge University Press (2007) [DOI]. · Zbl 1123.81001 · doi:10.2277/0521860695
[31] Easther, Richard; McAllister, Liam, Random matrices and the spectrum of N-flation, JCAP, 05 (2006) · doi:10.1088/1475-7516/2006/05/018
[32] Marsh, David; McAllister, Liam; Wrase, Timm, The Wasteland of Random Supergravities, JHEP, 03, 102 (2012) · Zbl 1309.81231 · doi:10.1007/JHEP03(2012)102
[33] Long, Cody; McAllister, Liam; McGuirk, Paul, Heavy Tails in Calabi-Yau Moduli Spaces, JHEP, 10, 187 (2014) · Zbl 1333.81223 · doi:10.1007/JHEP10(2014)187
[34] Stott, Matthew J.; Marsh, David J. E.; Pongkitivanichkul, Chakrit; Price, Layne C.; Acharya, Bobby S., Spectrum of the axion dark sector, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.083510
[35] Kreuzer, Maximilian; Skarke, Harald, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys., 4, 1209-1230 (2002) · Zbl 1017.52007 · doi:10.4310/ATMP.2000.v4.n6.a2
[36] Witten, Edward, World sheet corrections via D instantons, JHEP, 02, 030 (2000) · Zbl 0959.81034 · doi:10.1088/1126-6708/2000/02/030
[37] Stout, John, Instanton Expansions and Phase Transitions (2020)
[38] Stott, Matthew J.; Marsh, David J. E., Black hole spin constraints on the mass spectrum and number of axionlike fields, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.083006
[39] Stott, Matthew J., Ultralight Bosonic Field Mass Bounds from Astrophysical Black Hole Spin (2020)
[40] Mehta, Viraf M.; Demirtas, Mehmet; Long, Cody; Marsh, David J. E.; Mcallister, Liam; Stott, Matthew J., Superradiance Exclusions in the Landscape of Type IIB String Theory (2020)
[41] Demirtas, Mehmet; McAllister, Liam; Rios-Tascon, Andres, Bounding the Kreuzer-Skarke Landscape (2020)
[42] M. Demirtas, L. McAllister and A. Rios-Tascon, CYTools: A Software Package for Analyzing Calabi-Yau Hypersurfaces in Toric Varieties, to appear (2021).
[43] Carta, Federico; Moritz, Jakob; Westphal, Alexander, A landscape of orientifold vacua, JHEP, 05, 107 (2020) · doi:10.1007/JHEP05(2020)107
[44] Gao, Xin; Shukla, Pramod, On Classifying the Divisor Involutions in Calabi-Yau Threefolds, JHEP, 11, 170 (2013) · Zbl 1342.81425 · doi:10.1007/JHEP11(2013)170
[45] Bachlechner, Thomas C.; Long, Cody; McAllister, Liam, Planckian Axions in String Theory, JHEP, 12, 042 (2015) · Zbl 1388.81475 · doi:10.1007/JHEP12(2015)042
[46] Long, Cody; McAllister, Liam; Stout, John, Systematics of Axion Inflation in Calabi-Yau Hypersurfaces, JHEP, 02, 014 (2017) · Zbl 1377.85019 · doi:10.1007/JHEP02(2017)014
[47] A. Buras, J.R. Ellis, M. Gaillard and D.V. Nanopoulos, Aspects of the Grand Unification of Strong, Weak and Electromagnetic Interactions, Nucl. Phys. B135 (1978) 66. · doi:10.1016/0550-3213(78)90214-6
[48] Dimopoulos, S.; Raby, S.; Wilczek, Frank, Supersymmetry and the Scale of Unification, Phys. Rev. D, 24, 1681-1683 (1981) · doi:10.1103/PhysRevD.24.1681
[49] A. Rios-Tascon, On the Kähler Cones of Calabi-Yau Hypersurfaces, unpublished (2020).
[50] Witten, Edward, Nonperturbative superpotentials in string theory, Nucl. Phys. B, 474, 343-360 (1996) · Zbl 0925.32012 · doi:10.1016/0550-3213(96)00283-0
[51] Marsano, Joseph; Saulina, Natalia; Schafer-Nameki, Sakura, An Instanton Toolbox for F-Theory Model Building, JHEP, 01, 128 (2010) · Zbl 1269.81143 · doi:10.1007/JHEP01(2010)128
[52] Blumenhagen, Ralph; Cvetic, Mirjam; Kachru, Shamit; Weigand, Timo, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci., 59, 269-296 (2009) · doi:10.1146/annurev.nucl.010909.083113
[53] Blumenhagen, Ralph; Collinucci, Andres; Jurke, Benjamin, On Instanton Effects in F-theory, JHEP, 08, 079 (2010) · Zbl 1290.81103 · doi:10.1007/JHEP08(2010)079
[54] Donagi, Ron; Wijnholt, Martijn, MSW Instantons, JHEP, 06, 050 (2013) · Zbl 1342.83358 · doi:10.1007/JHEP06(2013)050
[55] Cvetic, Mirjam; Garcia Etxebarria, Inaki; Halverson, James, Three Looks at Instantons in F-theory - New Insights from Anomaly Inflow, String Junctions and Heterotic Duality, JHEP, 11, 101 (2011) · Zbl 1306.81209 · doi:10.1007/JHEP11(2011)101
[56] Grimm, Thomas W.; Kerstan, Max; Palti, Eran; Weigand, Timo, On Fluxed Instantons and Moduli Stabilisation in IIB Orientifolds and F-theory, Phys. Rev. D, 84 (2011) · Zbl 1306.81105 · doi:10.1103/PhysRevD.84.066001
[57] Martucci, Luca; Weigand, Timo, Hidden Selection Rules, M5-instantons and Fluxes in F-theory, JHEP, 10, 131 (2015) · Zbl 1388.81584 · doi:10.1007/JHEP10(2015)131
[58] Braun, Andreas P.; Long, Cody; McAllister, Liam; Stillman, Michael; Sung, Benjamin, The Hodge Numbers of Divisors of Calabi-Yau Threefold Hypersurfaces (2017)
[59] Polchinski, Joseph; Baer, H.; Belyaev, A., Monopoles, duality, and string theory, Int. J. Mod. Phys. A, 19S1, 145-156 (2004) · Zbl 1080.81582 · doi:10.1142/S0217751X0401866X
[60] Heidenreich, Ben; Reece, Matthew; Rudelius, Tom, Evidence for a sublattice weak gravity conjecture, JHEP, 08, 025 (2017) · Zbl 1381.83065 · doi:10.1007/JHEP08(2017)025
[61] Andriolo, Stefano; Junghans, Daniel; Noumi, Toshifumi; Shiu, Gary, A Tower Weak Gravity Conjecture from Infrared Consistency, Fortsch. Phys., 66 (2018) · Zbl 07760666 · doi:10.1002/prop.201800020
[62] Montero, Miguel; Shiu, Gary; Soler, Pablo, The Weak Gravity Conjecture in three dimensions, JHEP, 10, 159 (2016) · Zbl 1390.83123 · doi:10.1007/JHEP10(2016)159
[63] Demirtas, Mehmet; Long, Cody; McAllister, Liam; Stillman, Mike, Minimal Surfaces and Weak Gravity, JHEP, 03, 021 (2020) · Zbl 1435.83018 · doi:10.1007/JHEP03(2020)021
[64] Detweiler, Steven L., KLEIN-GORDON EQUATION AND ROTATING BLACK HOLES, Phys. Rev. D, 22, 2323-2326 (1980) · doi:10.1103/PhysRevD.22.2323
[65] Dolan, Sam R., Instability of the massive Klein-Gordon field on the Kerr spacetime, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.084001
[66] Cardoso, Vitor; Dias, Oscar J. C.; Lemos, Jose P. S.; Yoshida, Shijun, The Black hole bomb and superradiant instabilities, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.049903
[67] Arvanitaki, Asimina; Baryakhtar, Masha; Huang, Xinlu, Discovering the QCD Axion with Black Holes and Gravitational Waves, Phys. Rev. D, 91 (2015) · doi:10.1103/PhysRevD.91.084011
[68] Teukolsky, Saul A., Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J., 185, 635-647 (1973) · doi:10.1086/152444
[69] Teukolsky, S. A., Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations, Phys. Rev. Lett., 29, 1114-1118 (1972) · doi:10.1103/PhysRevLett.29.1114
[70] Brill, D. R.; Chrzanowski, P. L.; Martin Pereira, C.; Fackerell, E. D.; Ipser, J. R., Solution of the scalar wave equation in a kerr background by separation of variables, Phys. Rev. D, 5, 1913-1915 (1972) · doi:10.1103/PhysRevD.5.1913
[71] Baumann, Daniel; Chia, Horng Sheng; Stout, John; ter Haar, Lotte, The Spectra of Gravitational Atoms, JCAP, 12 (2019) · Zbl 07500910 · doi:10.1088/1475-7516/2019/12/006
[72] Zouros, T. J. M.; Eardley, D. M., INSTABILITIES OF MASSIVE SCALAR PERTURBATIONS OF A ROTATING BLACK HOLE, Annals Phys., 118, 139-155 (1979) · doi:10.1016/0003-4916(79)90237-9
[73] Salpeter, E. E., Accretion of Interstellar Matter by Massive Objects, Astrophys. J., 140, 796-800 (1964) · doi:10.1086/147973
[74] Baumann, Daniel; Chia, Horng Sheng; Porto, Rafael A., Probing Ultralight Bosons with Binary Black Holes, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.044001
[75] Zhang, Jun; Yang, Huan, Dynamic Signatures of Black Hole Binaries with Superradiant Clouds, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.043020
[76] Zhang, Jun; Yang, Huan, Gravitational floating orbits around hairy black holes, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.064018
[77] Baumann, Daniel; Chia, Horng Sheng; Porto, Rafael A.; Stout, John, Gravitational Collider Physics, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.083019
[78] Berti, Emanuele; Brito, Richard; Macedo, Caio F. B.; Raposo, Guilherme; Rosa, Joao Luis, Ultralight boson cloud depletion in binary systems, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.104039
[79] Kavic, Michael; Liebling, Steven L.; Lippert, Matthew; Simonetti, John H., Accessing the axion via compact object binaries, JCAP, 08 (2020) · doi:10.1088/1475-7516/2020/08/005
[80] Cardoso, Vitor; Duque, Francisco; Ikeda, Taishi, Tidal effects and disruption in superradiant clouds: a numerical investigation, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.064054
[81] Yoshino, Hirotaka; Kodama, Hideo, Bosenova collapse of axion cloud around a rotating black hole, Prog. Theor. Phys., 128, 153-190 (2012) · Zbl 1254.83027 · doi:10.1143/PTP.128.153
[82] Yoshino, Hirotaka; Kodama, Hideo, The bosenova and axiverse, Class. Quant. Grav., 32 (2015) · Zbl 1329.83006 · doi:10.1088/0264-9381/32/21/214001
[83] Mocanu, Gabriela; Grumiller, Daniel, Self-organized criticality in boson clouds around black holes, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.105022
[84] Baryakhtar, Masha; Galanis, Marios; Lasenby, Robert; Simon, Olivier, Black hole superradiance of self-interacting scalar fields, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.095019
[85] Shafee, Rebecca; McClintock, Jeffrey E.; Narayan, Ramesh; Davis, Shane W.; Li, Li-Xin; Remillard, Ronald A., Estimating the spin of stellar-mass black holes via spectral fitting of the x-ray continuum, Astrophys. J. Lett., 636, L113-L116 (2006) · doi:10.1086/498938
[86] Greene, Jenny; Bailyn, Charles D.; Orosz, Jerome A., Optical and infrared photometry of the micro-quasar gro j1655-40 in quiescence, Astrophys. J., 554, 1290 (2001) · doi:10.1086/321411
[87] Cantrell, Andrew G.; Bailyn, Charles D.; Orosz, Jerome A.; McClintock, Jeffrey E.; Remillard, Ronald A.; Froning, Cynthia S., The Inclination of the Soft X-ray Transient A0620-00 and the Mass of its Black Hole, Astrophys. J., 710, 1127-1141 (2010) · doi:10.1088/0004-637X/710/2/1127
[88] Gou, Lijun; McClintock, Jeffrey E.; Steiner, James F.; Narayan, Ramesh; Cantrell, Andrew G.; Bailyn, Charles D., The Spin of the Black Hole in the Soft X-ray Transient A0620-00, Astrophys. J. Lett., 718, L122 (2010) · doi:10.1088/2041-8205/718/2/L122
[89] J.A. Orosz et al., The Mass of the Black Hole in LMC X-3, Astrophys. J.794 (2014) 154 [1402.0085]. · doi:10.1088/0004-637X/794/2/154
[90] Steiner, James F.; McClintock, Jeffrey E.; Orosz, Jerome A.; Remillard, Ronald A.; Bailyn, Charles D.; Kolehmainen, Mari, The Low-Spin Black Hole in LMC X-3, Astrophys. J. Lett., 793, L29 (2014) · doi:10.1088/2041-8205/793/2/L29
[91] Orosz, Jerome A.; Steiner, James F.; McClintock, Jeffrey E.; Torres, Manuel A. P.; Remillard, Ronald A.; Bailyn, Charles D., An Improved Dynamical Model for the Microquasar XTE J1550-564, Astrophys. J., 730, 75 (2011) · doi:10.1088/0004-637X/730/2/75
[92] Steiner, James F.; Reis, Rubens C.; McClintock, Jeffrey E.; Narayan, Ramesh; Remillard, Ronald A.; Orosz, Jerome A., The Spin of the Black Hole Microquasar XTE J1550-564 via the Continuum-Fitting and Fe-Line Methods, Mon. Not. Roy. Astron. Soc., 416, 941-958 (2011) · doi:10.1111/j.1365-2966.2011.19089.x
[93] K.A. Van Der Hucht, A. Herrero and C. Esteban, A Massive Star Odyssey: From Main Sequence to Supernova, IAU Symposium212 (2003) 365.
[94] Orosz, Jerome A., A New Dynamical Model for the Black Hole Binary LMC X-1, Astrophys. J., 697, 573-591 (2009) · doi:10.1088/0004-637X/697/1/573
[95] Gou, Lijun; McClintock, Jeffrey E.; Liu, Jifeng; Narayan, Ramesh; Steiner, James F.; Remillard, Ronald A., A Determination of the Spin of the Black Hole Primary in LMC X-1, Astrophys. J., 701, 1076-1090 (2009) · doi:10.1088/0004-637X/701/2/1076
[96] Steeghs, D.; McClintock, J. E.; Parsons, S. G.; Reid, M. J.; Littlefair, S.; Dhillon, V. S., The not-so-massive black hole in the microquasar GRS1915+105, Astrophys. J., 768, 185 (2013) · doi:10.1088/0004-637X/768/2/185
[97] McClintock, Jeffrey E.; Shafee, Rebecca; Narayan, Ramesh; Remillard, Ronald A.; Davis, Shane W.; Li, Li-Xin, The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105, Astrophys. J., 652, 518-539 (2006) · doi:10.1086/508457
[98] Orosz, Jerome A.; McClintock, Jeffrey E.; Aufdenberg, Jason P.; Remillard, Ronald A.; Reid, Mark J.; Narayan, Ramesh, The Mass of the Black Hole in Cygnus X-1, Astrophys. J., 742, 84 (2011) · doi:10.1088/0004-637X/742/2/84
[99] Gou, Lijun; McClintock, Jeffrey E.; Remillard, Ronald A.; Steiner, James F.; Reid, Mark J.; Orosz, Jerome A., Confirmation Via the Continuum-Fitting Method that the Spin of the Black Hole in Cygnus X-1 is Extreme, Astrophys. J., 790, 29 (2014) · doi:10.1088/0004-637X/790/1/29
[100] Orosz, Jerome A., A 15.65 solar mass black hole in an eclipsing binary in the nearby spiral galaxy Messier 33, Nature, 449, 872 (2007) · doi:10.1038/nature06218
[101] Liu, Jifeng; McClintock, Jeffery; Narayan, Ramesh; Davis, Shane; Orosz, Jerome, Precise Measurement of the Spin Parameter of the Stellar-Mass Black Hole M33 X-7, Astrophys. J. Lett., 679, L37-L40 (2008) · doi:10.1086/588840
[102] LIGO Scientific, Virgo Collaboration; Abbott, B. P., GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X, 9 (2019) · doi:10.1103/PhysRevX.9.031040
[103] LIGO Scientific, Virgo Collaboration; Abbott, R., GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_⊙, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.101102
[104] Peterson, Bradley M., Central masses and broad-line region sizes of active galactic nuclei. II. A Homogeneous analysis of a large reverberation-mapping database, Astrophys. J., 613, 682-699 (2004) · doi:10.1086/423269
[105] Lohfink, Anne M.; Reynolds, Christopher S.; Miller, Jon M.; Brenneman, Laura W.; Mushotzky, Richard F.; Nowak, Michael A., The Black Hole Spin and Soft X-ray Excess of the Luminous Seyfert Galaxy Fairall 9, Astrophys. J., 758, 67 (2012) · doi:10.1088/0004-637X/758/1/67
[106] Gallo, L. C.; Miniutti, G.; Miller, J. M.; Brenneman, L. W.; Fabian, A. C.; Guainazzi, M., Multi-epoch X-ray observations of the Seyfert 1.2 galaxy Mrk 79: bulk motion of the illuminating X-ray source, Mon. Not. Roy. Astron. Soc., 411, 607 (2011) · doi:10.1111/j.1365-2966.2010.17705.x
[107] Brenneman, L. W., The Spin of the Supermassive Black Hole in NGC 3783, Astrophys. J., 736, 103 (2011) · doi:10.1088/0004-637X/736/2/103
[108] Walton, D. J.; Nardini, E.; Fabian, A. C.; Gallo, L. C.; Reis, R. C., Suzaku observations of “bare” active galactic nuclei, Mon. Not. Roy. Astron. Soc., 428, 2901 (2013) · doi:10.1093/mnras/sts227
[109] McHardy, Ian M.; Gunn, K. F.; Uttley, P.; Goad, M. R., MCG-6-30-15: Long timescale x-ray variability, black hole mass and AGN high states, Mon. Not. Roy. Astron. Soc., 359, 1469-1480 (2005) · doi:10.1111/j.1365-2966.2005.08992.x
[110] Brenneman, Laura W.; Reynolds, Christopher S., Constraining Black Hole Spin Via X-ray Spectroscopy, Astrophys. J., 652, 1028-1043 (2006) · doi:10.1086/508146
[111] Patrick, A. R.; Reeves, J. N.; Lobban, A. P.; Porquet, D.; Markowitz, A. G., Assessing black hole spin in deep Suzaku observations of Seyfert 1 AGN, Mon. Not. Roy. Astron. Soc., 416, 2725 (2011) · doi:10.1111/j.1365-2966.2011.19224.x
[112] Patrick, A. R.; Reeves, J. N.; Porquet, D.; Markowitz, A. G.; Braito, V.; Lobban, A. P., A Suzaku survey of Fe K lines in Seyfert 1 AGN, Mon. Not. Roy. Astron. Soc., 426, 2522 (2012) · doi:10.1111/j.1365-2966.2012.21868.x
[113] Event Horizon Telescope Collaboration; Akiyama, Kazunori, First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring, Astrophys. J. Lett., 875, L5 (2019) · doi:10.3847/2041-8213/ab0f43
[114] Tamburini, Fabrizio; Thidé, Bo; Della Valle, Massimo, Measurement of the spin of the M87 black hole from its observed twisted light, Mon. Not. Roy. Astron. Soc., 492, L22-L27 (2020) · doi:10.1093/mnrasl/slz176
[115] Boskovic, Mateja; Brito, Richard; Cardoso, Vitor; Ikeda, Taishi; Witek, Helvi, Axionic instabilities and new black hole solutions, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.035006
[116] Ikeda, Taishi; Brito, Richard; Cardoso, Vitor, Blasts of Light from Axions, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.081101
[117] Bošković, MatejaParametric-resonance based phenomenology of gravitating axion configurations2019
[118] Halverson, James; Long, Cody; Nelson, Brent; Salinas, Gustavo, Towards string theory expectations for photon couplings to axionlike particles, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.106010
[119] Bachlechner, Thomas C.; Eckerle, Kate; Janssen, Oliver; Kleban, Matthew, Multiple-axion framework, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.061301
[120] F. Johansson et al., mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.18), December 2013, http://mpmath.org/.
[121] F. Biscani and D. Izzo, A parallel global multiobjective framework for optimization: pagmo, J. Open Source Softw.5 (2020) 2338. · doi:10.21105/joss.02338
[122] Coleman, Sidney R.; De Luccia, Frank, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D, 21, 3305 (1980) · doi:10.1103/PhysRevD.21.3305
[123] Payez, Alexandre; Evoli, Carmelo; Fischer, Tobias; Giannotti, Maurizio; Mirizzi, Alessandro; Ringwald, Andreas, Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles, JCAP, 02 (2015) · doi:10.1088/1475-7516/2015/02/006
[124] Hoof, Sebastian; Kahlhoefer, Felix; Scott, Pat; Weniger, Christoph; White, Martin, Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT, JHEP, 03, 191 (2019) · doi:10.1007/JHEP03(2019)191
[125] Day, Francesca; Krippendorf, Sven, Searching for Axion-Like Particles with X-ray Polarimeters, Galaxies, 6, 45 (2018) · doi:10.3390/galaxies6020045
[126] Reynolds, Christopher S.; Marsh, M. C. David; Russell, Helen R.; Fabian, Andrew C.; Smith, Robyn; Tombesi, Francesco, Astrophysical limits on very light axion-like particles from Chandra grating spectroscopy of NGC 1275 (2019) · doi:10.3847/1538-4357/ab6a0c
[127] Minami, Yuto; Komatsu, Eiichiro, New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data, Phys. Rev. Lett., 125 (2020) · doi:10.1103/PhysRevLett.125.221301
[128] Carroll, Sean M.; Field, George B.; Jackiw, Roman, Limits on a Lorentz and Parity Violating Modification of Electrodynamics, Phys. Rev. D, 41, 1231 (1990) · doi:10.1103/PhysRevD.41.1231
[129] Pospelov, Maxim; Ritz, Adam; Skordis, Constantinos; Ritz, Adam; Skordis, Constantinos, Pseudoscalar perturbations and polarization of the cosmic microwave background, Phys. Rev. Lett., 103 (2009) · doi:10.1103/PhysRevLett.103.051302
[130] Caldwell, Robert R.; Gluscevic, Vera; Kamionkowski, Marc, Cross-Correlation of Cosmological Birefringence with CMB Temperature, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.043504
[131] Zhao, Wen; Li, Mingzhe, Fluctuations of cosmological birefringence and the effect on CMB B-mode polarization, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.103518
[132] Fedderke, Michael A.; Graham, Peter W.; Rajendran, Surjeet, Axion Dark Matter Detection with CMB Polarization, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.015040
[133] Fujita, Tomohiro; Murai, Kai; Nakatsuka, Hiromasa; Tsujikawa, Shinji, Detection of isotropic cosmic birefringence and its implications for axionlike particles including dark energy, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.043509
[134] Takahashi, Fuminobu; Yin, Wen, Kilobyte Cosmic Birefringence from ALP Domain Walls, JCAP, 04 (2021) · Zbl 1485.83091 · doi:10.1088/1475-7516/2021/04/007
[135] Harris, Charles R., Array programming with NumPy, Nature, 585, 357-362 (2020) · doi:10.1038/s41586-020-2649-2
[136] Hunter, John D., Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng., 9, 90-95 (2007) · doi:10.1109/MCSE.2007.55
[137] P. Virtanen et al., SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods17 (2020) 261. · doi:10.1038/s41592-019-0686-2
[138] M. Waskom and the seaborn development team, mwaskom/seaborn, September 2020, 10.5281/zenodo.592845. · doi:10.5281/zenodo.592845
[139] W. McKinney, Data Structures for Statistical Computing in Python, in Proceedings of the 9th Python in Science Conference, S. van der Walt and J. Millman eds., pp. 56-61 (2010) [DOI]. · doi:10.25080/Majora-92bf1922-00a
[140] The pandas development team, pandas-dev/pandas: Pandas, February 2020, 10.5281/zenodo.3509134. · doi:10.5281/zenodo.3509134
[141] S. Elsayed, R. Sarker and D. Essam, Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems, pp. 1041-1048 (2011) [DOI]. · doi:10.1109/CEC.2011.5949732
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.