×

Quantifying conditional probability tables in Bayesian networks: Bayesian regression for scenario-based encoding of elicited expert assessments on feral pig habitat. (English) Zbl 1521.62239

Summary: Bayesian networks are now widespread for modelling uncertain knowledge. They graph probabilistic relationships, which are quantified using conditional probability tables (CPTs). When empirical data are unavailable, experts may specify CPTs. Here we propose novel methodology for quantifying CPTs: a Bayesian statistical approach to both elicitation and encoding of expert-specified probabilities, in a way that acknowledges their uncertainty. We illustrate this new approach using a case study describing habitat most at risk from feral pigs. For complicated CPTs, it is difficult to elicit all scenarios (CPT entries). Like the CPT Calculator software program, we ask about a few scenarios (e.g. under a one-factor-at-a-time design) to reduce the experts’ workload. Unlike CPT Calculator, we adopt a global rather than local regression to ‘fill out’ CPT entries. Unlike other methods for scenario-based elicitation for regression, we capture uncertainty about each probability in a sequence that explicitly controls biases and enhances interpretation. Furthermore, to utilize all elicited information, we introduce Bayesian rather than Classical generalised linear modelling (GLM). For large CPTs (e.g. \(>3\) levels per parent) we show Bayesian GLM supports richer inference, particularly on interactions, even with few scenarios, providing more information regarding accuracy of encoding.

MSC:

62-XX Statistics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agena, L., Agenarisk software, 2007. Available at www.agenarisk.com.
[2] Aho, K.; Derryberry, D.; Peterson, T., Model selection for ecologists: The worldviews of AIC and BIC, Ecology, 95, 631-636 (2014)
[3] Albert, I.; Donnet, S.; Guihenneuc-Jouyaux, C.; Low-Choy, S.; Mengersen, K.; Rousseau, J., Combining expert opinions in prior elicitation, Bayesian Anal., 7, 503-532 (2012) · Zbl 1330.62105
[4] Bailey, R. A., Block designs: A randomization approach. Vol. I: Analysis and block designs: A randomization approach. Vol. II: Design, J. Am. Stat. Assoc., 99, 558-560 (2004)
[5] Ban, S. S.; Pressey, R. L.; Graham, N. A.J., Assessing interactions of multiple stressors when data are limited: A Bayesian belief network applied to coral reefs, Glob. Environ. Change, 27, 64-72 (2014)
[6] Barrios-Garcia, M. N.; Ballari, S. A., Impact of wild boar (Sus scrofa) in its introduced and native range: A review, Biol. Invasions, 14, 2283-2300 (2012)
[7] Barry, S. and Lin, X., Point of truth calibration: Putting science into scoring systems, Australian Centre of Excellence for Risk Analysis (ACERA), 2010.
[8] Bashari, H.; Smith, C.; Bosch, O. J.H., Developing decision support tools for rangeland management by combining state and transition models and Bayesian belief networks, Agric. Syst., 99, 23-34 (2008)
[9] Beale, R., Fairbrother, J., Inglis, A., and Trebeck, D., One biosecurity: A working partnership the independent review of Australia’s Quarantine and biosecurity arrangements report to the Australian Government, Commonwealth of Australia, 2008.
[10] Bengsen, A. J.; Gentle, M. N.; Mitchell, J. L.; Pearson, H. E.; Saunders, G. R., Impacts and management of Wild Pigs Sus scrofa in Australia, Mammal Rev., 44, 135-147 (2014)
[11] Bernardo, J. M.; Smith, A. F.M., Bayesian Theory (2001), Wiley: Wiley, Chichester, New York
[12] Box, G. E.; Hunter, J. S.; Hunter, W. G., Statistics for experimenters: Design, innovation, and discovery, AMC, 10, 12 (2005) · Zbl 1082.62063
[13] Branscum, A. J.; Johnson, W. O.; Thurmond, M. C., Bayesian beta regression: Applications to household expenditure data and genetic distance between foot-and-mouth disease viruses, Aust. N. Z. J. Stat., 49, 287-301 (2007) · Zbl 1136.62323
[14] Braysher, M. and Moore, R., Threat abatement plan for predation, habitat degradation, competition and disease transmission by feral pigs, Australian Department of Environment and Heritage, Canberra, 2004.
[15] Burgman, M., Risks and Decisions for Conservation and Environmental Management (2005), Cambridge University Press
[16] Burgman, M.; Fidler, F.; Mcbride, M.; Walshe, T.; Wintle, B., Eliciting Expert Judgments: Literature Review (2006), Citeseer
[17] Bürkner, P. C., brms: An R package for Bayesian multilevel models using Stan, J. Stat. Softw., 80, 1-28 (2017)
[18] Cain, J., Planning improvements in natural resources management, Centre for Ecology and Hydrology, Wallingford, UK, Vol. 124, 2001, pp. 1-123.
[19] Caley, M. J.; O’Leary, R. A.; Fisher, R.; Low-Choy, S.; Johnson, S.; Mengersen, K., What is an expert? A systems perspective on expertise, Ecol. Evol., 4, 231-242 (2014)
[20] Chen, S. H.; Pollino, C. A., Good practice in Bayesian network modelling, Environ. Model. Softw., 37, 134-145 (2012)
[21] Clemen, R. T.; Fischer, G. W.; Winkler, R. L., Assessing dependence: Some experimental results, Manage. Sci., 46, 1100-1115 (2000) · Zbl 1232.91543
[22] Clemen, R. T.; Winkler, R. L., Combining probability distributions from experts in risk analysis, Risk Anal., 19, 187-203 (1999)
[23] Cooke, R., Experts in Uncertainty: Opinion and Subjective Probability in Science (1991), Oxford University Press on Demand: Oxford University Press on Demand, New York
[24] Daly, R.; Shen, Q.; Aitken, S., Learning Bayesian networks: Approaches and issues, Knowl. Eng. Rev., 26, 99-157 (2011)
[25] Dietrich, F.; List, C.; Hájek, A.; Hitchcock, C., Probabilistic Opinion Pooling (2016), Oxford University Press: Oxford University Press, Oxford
[26] Dobson, A. J.; Barnett, A., An Introduction to Generalized Linear Models (2008), CRC Press: CRC Press, London · Zbl 1165.62049
[27] Fenton, N. E.; Neil, M.; Caballero, J. G., Using ranked nodes to model qualitative judgments in Bayesian networks, IEEE Trans. Knowl. Data Eng., 19, 1420-1432 (2007)
[28] Fisher, R.; O’Leary, R. A.; Low-Choy, S.; Mengersen, K.; Caley, M. J., A software tool for elicitation of expert knowledge about species richness or similar counts, Environ. Model. Softw., 30, 1-14 (2012)
[29] Franklin, J., Species distribution models in conservation biogeography: Developments and challenges, Divers. Distrib., 19, 1217-1223 (2013)
[30] Froese, J. G.; Smith, C. S.; Durr, P. A.; McAlpine, C. A.; van Klinken, R. D., Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia, PLoS ONE, 12, e0177018 (2017)
[31] Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A., Visualization in Bayesian workflow, preprint (2018). Available at arXiv, arXiv:1709.01449.
[32] Garthwaite, P. H.; Kadane, J. B.; O’Hagan, A., Statistical methods for eliciting probability distributions, J. Am. Stat. Assoc., 100, 680-701 (2005) · Zbl 1117.62340
[33] Gelman, A.; Carlin, J. B.; Stern, H. S.; Rubin, D. B., Bayesian Data Analysis, 2 (2004), Chapman & Hall/CRC: Chapman & Hall/CRC, Boca Raton, FL, USA · Zbl 1039.62018
[34] Gelman, A.; Jakulin, A.; Pittau, M. G.; Su, Y. S., A weakly informative default prior distribution for logistic and other regression models, Ann. Appl. Stat., 2, 1360-1383 (2008) · Zbl 1156.62017
[35] Gelman, A., Su, Y.S., Yajima, M., Hill, J., Pittau, M.G., Kerman, J., Zheng, T., Dorie, V., and Su, M.Y.S., Package ‘arm’ (data analysis using regression and multilevel/hierarchical models), 2016. Available at https://CRAN.R-project.org/package=arm.
[36] Ghosh, J.; Li, Y.; Mitra, R., On the use of Cauchy prior distributions for Bayesian logistic regression, Bayesian Anal., 13, 359-383 (2018) · Zbl 1407.62276
[37] Goldstein, M., Subjective Bayesian analysis: Principles and practice, Bayesian Anal., 1, 403-420 (2006) · Zbl 1331.62047
[38] Goodrich, B., Gabry, J., Ali, I., and Brilleman, S., rstanarm: Bayesian Applied Regression Modeling via Stan, R package version 2.17.4, 2018. Available at http://mc-stan.org/.
[39] Gustafson, E.J., Using expert knowledge in landscape ecology, in Expert Knowledge and Its Application in Landscape Ecology A.H. Perera, C. Ashton Drew and C.J. johnson, eds., Springer, New York, USA, 2012, 307 pp. Illus., maps; 24 cm. hardcover, isbn 978-1-4614-1033-1, doi: (2013).
[40] Hanea, A.; Morales Napoles, O.; Ababei, D., Non-parametric Bayesian networks: Improving theory and reviewing applications, Reliab. Eng. Syst. Safe., 144, 265-284 (2015)
[41] Heckerman, D.; Geiger, D.; Chickering, D. M., Learning Bayesian networks: The combination of knowledge and statistical data, Mach. Learn., 20, 197-243 (1995) · Zbl 0831.68096
[42] Heinze, G.; Schemper, M., A solution to the problem of separation in logistic regression, Stat. Med., 21, 2409-2419 (2002)
[43] Hone, J., Wildlife Damage Control (2007), CSIRO
[44] James, A.; Choy, S. L.; Mengersen, K., Elicitator: An expert elicitation tool for regression in ecology, Environ. Model. Softw., 25, 129-145 (2010)
[45] Kadane, J. B.; Wolfson, L. J., Experiences in elicitation, J. R. Stat, Soc. D, 47, 3-19 (1998)
[46] Kjaerulff, U. B.; Madsen, A. L.; Nature, S., Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis (2008), Springer: Springer, New York
[47] Korn, T. and Bomford, M., Managing vertebrate pests: Feral pigs, 1996.
[48] Kuhnert, P. M.; Martin, T. G.; Griffiths, S. P., A guide to eliciting and using expert knowledge in Bayesian ecological models, Ecol. Lett., 13, 900-914 (2010)
[49] Kynn, M., The ‘heuristics and biases’ bias in expert elicitation, J. R. Stat. Soc. A, 171, 239-264 (2008)
[50] Low Choy, S., Priors: Silent or active partners of Bayesian inference? Case Studies in Bayesian Statistical Modelling and Analysis, 2012, pp. 30-65.
[51] Low Choy, S., Murray, J., James, A., and Mengersen, K.L., Indirect elicitation from ecological experts: From methods and software to habitat modelling and Rock-wallabies, The Oxford Handbook Of Applied Bayesian Analysis, 2010, pp. 511-544.
[52] Low Choy, S.; O’Leary, R.; Mengersen, K., Elicitation by design in ecology: Using expert opinion to inform priors for Bayesian statistical models, Ecology, 90, 265-277 (2009)
[53] Low Choy, S. J.; Mengersen, K. L.; Rousseau, J., Encoding expert opinion on skewed non-negative distributions, J. Appl. Probab. Stat., 3, 1-21 (2008) · Zbl 1302.62071
[54] Marcot, B. G.; Steventon, J. D.; Sutherland, G. D.; McCann, R. K., Guidelines for developing and updating Bayesian belief networks applied to ecological modeling and conservation, Can. J. Forest Res., 36, 3063-3074 (2006)
[55] McCann, R. K.; Marcot, B. G.; Ellis, R., Bayesian belief networks: Applications in ecology and natural resource management, Can. J. Forest Res., 36, 3053-3062 (2006)
[56] McConway, K. J., Marginalization and linear opinion pools, J. Am. Stat. Assoc., 76, 410-414 (1981) · Zbl 0455.90004
[57] Mkrtchyan, L.; Podofillini, L.; Dang, V. N., Bayesian belief networks for human reliability analysis: A review of applications and gaps, Reliab. Eng. Syst. Safe., 139, 1-16 (2015)
[58] Morales, O., Hanea, A.M., and Worm, D.T.H., Experimental results about the assessments of conditional rank correlations by experts: Example with air pollution estimates, 2014.
[59] Morales, O.; Kurowicka, D.; Roelen, A., Eliciting conditional and unconditional rank correlations from conditional probabilities, Reliab. Eng. Syst. Safe., 93, 699-710 (2008)
[60] Morgan, M. G.; Pitelka, L. F.; Shevliakova, E., Elicitation of expert judgments of climate change impacts on forest ecosystems, Clim. Change, 49, 279-307 (2001)
[61] O’Hagan, A., Probabilistic uncertainty specification: Overview, elaboration techniques and their application to a mechanistic model of carbon flux, Environ. Model. Softw., 36, 35-48 (2012)
[62] O’Hagan, A.; Buck, C. E.; Daneshkhah, A.; Eiser, J. R.; Garthwaite, P. H.; Jenkinson, D. J.; Oakley, J. E.; Rakow, T., Uncertain Judgements: Eliciting Experts’ Probabilities (2006), John Wiley & Sons: John Wiley & Sons, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England · Zbl 1269.62009
[63] O’Hagan, A.; Oakley, J. E., Probability is perfect, but we can’t elicit it perfectly, Reliab. Eng. Syst. Safe., 85, 239-248 (2004)
[64] O’Leary, R. A.; Low-Choy, S.; Fisher, R.; Mengersen, K.; Caley, M. J., Characterising uncertainty in expert assessments: Encoding heavily skewed judgements, PLoS ONE, 10, e0141697 (2015)
[65] Ostfeld, R. S.; Glass, G. E.; Keesing, F., Spatial epidemiology: An emerging (or re-emerging) discipline, Trends. Ecol. Evol., 20, 328-336 (2005)
[66] Pearl, J., Bayesian networks: A model of self-activated memory for evidential reasoning, University of California (Los Angeles). Computer Science Department, 1985. Available at http://ci.nii.ac.jp/naid/10026775302/.
[67] Pearl, J., Fusion, propagation, and structuring in belief networks, Artif. Intell., 29, 241-288 (1986) · Zbl 0624.68081
[68] Pike, W. A., Modeling drinking water quality violations with Bayesian Networks, Am. Water Resour. Assoc., 40, 1563-1578 (2004)
[69] R Core Team, R: A Language and Environment for Statistical Computing (2013), R Foundation for Statistical Computing: R Foundation for Statistical Computing, Vienna, Austria
[70] Saltelli, A.; Annoni, P., How to avoid a perfunctory sensitivity analysis, Environ. Model. Softw., 25, 1508-1517 (2010)
[71] Smith, C. S.; Howes, A. L.; Price, B.; McAlpine, C. A., Using a Bayesian belief network to predict suitable habitat of an endangered mammal-The Julia Creek dunnart Sminthopsis Douglasi, Biol. Conserv., 139, 333-347 (2007)
[72] Speirs-Bridge, A.; Fidler, F.; McBride, M.; Flander, L.; Cumming, G.; Burgman, M., Reducing overconfidence in the interval judgments of experts, Risk Anal., 30, 512-523 (2010)
[73] Spetzler, C. S.; Stael von Holstein, C. A.S., Probability encoding in decision analysis, Manage. Sci., 22, 340-358 (1975)
[74] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; Van Der Linde, A., Bayesian measures of model complexity and fit, J. R. Stat. Soc. B, 64, 583-639 (2002) · Zbl 1067.62010
[75] Teigen, K. H.; Jørgensen, M., When 90certain: On the credibility of credible intervals, Appl. Cogn. Psychol., 19, 455-475 (2005)
[76] Tversky, A.; Kahneman, D., Judgment under uncertainty: Heuristics and biases, Science, 185, 1124-1131 (1974)
[77] van de Schoot, R.; Broere, J.; Perryck, K.; Zondervan Zwijnenburg, M. A.J.; Van Loey, N. E.E., Analyzing small data sets using Bayesian estimation: The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors, Eur. J. Psychotraumatol., 6, 1-13 (2015)
[78] van de Schoot, R.; Depaoli, S., Bayesian analyses: Where to start and what to report, Eur. Health Psychol., 16, 75-84 (2014)
[79] Van de Schoot, R.; Kaplan, D.; Denissen, J.; Asendorpf, J. B.; Neyer, F. J.; van Aken, M. A., A gentle introduction to Bayesian analysis: Applications to developmental research, Child. Dev., 85, 842-860 (2014)
[80] Van Der Linde, A., Dic in variable selection, Stat. Neerl., 59, 45-56 (2005) · Zbl 1069.62005
[81] van Klinken, R., Murray, J.V., Smith, C. and Venette, R., Process-based pest risk mapping using Bayesian networks and gis, in Pest Risk Modelling and Mapping for Invasive Alien Species, R.C. Venette, ed., 2015, pp. 171-188.
[82] Vehtari, A., Gelman, A. and Gabry, J., Efficient implementation of leave-one-out cross-validation and waic for evaluating fitted Bayesian models, preprint (2015). Available at arXiv:1507.04544, p. 1-22.
[83] Vehtari, A.; Gelman, A.; Gabry, J., Practical Bayesian model evaluation using leave-one-out cross-validation and waic, Stat. Comput., 27, 1413-1432 (2017) · Zbl 1505.62408
[84] Venables, W. N.; Ripley, B. D., Modern Applied Statistics with S (2002), Springer: Springer, New York · Zbl 1006.62003
[85] Venette, R. C.; Kriticos, D. J.; Magarey, R. D.; Koch, F. H.; Baker, R. H.A.; Worner, S. P.; Gómez Raboteaux, N. N.; McKenney, D. W.; Dobesberger, E. J.; Yemshanov, D.; De Barro, P. J.; Hutchison, W. D.; Fowler, G.; Kalaris, T. M.; Pedlar, J., Pest risk maps for invasive alien species: A roadmap for improvement, BioScience, 60, 349-362 (2010)
[86] Watanabe, S., Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory, J. Mach. Learn. Res., 11, 3571-3594 (2010) · Zbl 1242.62024
[87] Werner, C.; Bedford, T.; Cooke, R. M.; Hanea, A. M.; Morales-Nápoles, O., Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions, Eur. J. Oper. Res., 258, 801-819 (2017) · Zbl 1394.90368
[88] Western, B.; Jackman, S., Bayesian inference for comparative research, Am. Political Sci. Rev., 88, 412-423 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.