Lee, Seungjai; Vaughan-Lee, Michael The groups and nilpotent Lie rings of order \(p^8\) with maximal class. (English) Zbl 07873971 Exp. Math. 33, No. 2, 247-253 (2024). Reviewer: Enrico Jabara (Venezia) MSC: 20D15 17B30 PDFBibTeX XMLCite \textit{S. Lee} and \textit{M. Vaughan-Lee}, Exp. Math. 33, No. 2, 247--253 (2024; Zbl 07873971) Full Text: DOI arXiv
de Graaf, Willem A. Exploring Lie theory with \(\mathsf{GAP}\). (English) Zbl 1526.17032 Detinko, Alla (ed.) et al., Computational aspects of discrete subgroups of Lie groups. Virtual conference, Institute for Computational and Experimental Research in Mathematics, ICERM, Providence, Rhode Island, USA June 14–18, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 783, 27-46 (2023). MSC: 17B45 17B08 20G05 17-08 PDFBibTeX XMLCite \textit{W. A. de Graaf}, Contemp. Math. 783, 27--46 (2023; Zbl 1526.17032) Full Text: DOI arXiv
Eick, Bettina; Ghorbanzadeh, Taleea Jalaeeyan Computing the Schur multipliers of the Lie \(p\)-rings in the family defined by a symbolic Lie \(p\)-ring presentation. (English) Zbl 1535.17021 J. Symb. Comput. 106, 68-77 (2021). MSC: 17B50 17B56 20D15 20C25 PDFBibTeX XMLCite \textit{B. Eick} and \textit{T. J. Ghorbanzadeh}, J. Symb. Comput. 106, 68--77 (2021; Zbl 1535.17021) Full Text: DOI
Eick, Bettina; Vaughan-Lee, Michael The GAP package LiePRing. (English) Zbl 1504.17001 Bigatti, Anna Maria (ed.) et al., Mathematical software – ICMS 2020. 7th international conference, Braunschweig, Germany, July 13–16, 2020. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12097, 131-140 (2020). MSC: 17-08 17B30 PDFBibTeX XMLCite \textit{B. Eick} and \textit{M. Vaughan-Lee}, Lect. Notes Comput. Sci. 12097, 131--140 (2020; Zbl 1504.17001) Full Text: DOI
Eick, Bettina; Moede, Tobias The enumeration of groups of order \(p^{n}q\) for \(n\leq 5\). (English) Zbl 1403.20035 J. Algebra 507, 571-591 (2018). Reviewer: Marian Deaconescu (Safat) MSC: 20D60 20D15 20D20 20-04 PDFBibTeX XMLCite \textit{B. Eick} and \textit{T. Moede}, J. Algebra 507, 571--591 (2018; Zbl 1403.20035) Full Text: DOI
Maglione, Joshua Most small \(p\)-groups have an automorphism of order 2. (English) Zbl 1366.20011 Arch. Math. 108, No. 3, 225-232 (2017). Reviewer: Gernot Stroth (Halle) MSC: 20D15 20D45 PDFBibTeX XMLCite \textit{J. Maglione}, Arch. Math. 108, No. 3, 225--232 (2017; Zbl 1366.20011) Full Text: DOI
Vaughan-Lee, Michael Groups of order \(p^8\) and exponent \(p\). (English) Zbl 1456.20016 Int. J. Group Theory 4, No. 4, 25-42 (2015). MSC: 20D60 20D15 PDFBibTeX XMLCite \textit{M. Vaughan-Lee}, Int. J. Group Theory 4, No. 4, 25--42 (2015; Zbl 1456.20016) Full Text: DOI