de Graaf, Willem A. Exploring Lie theory with \(\mathsf{GAP}\). (English) Zbl 1526.17032 Detinko, Alla (ed.) et al., Computational aspects of discrete subgroups of Lie groups. Virtual conference, Institute for Computational and Experimental Research in Mathematics, ICERM, Providence, Rhode Island, USA June 14–18, 2021. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 783, 27-46 (2023). Summary: We illustrate the Lie theoretic capabilities of the computational algebra system \(\mathsf{GAP}4\) by reporting on results on nilpotent orbits of simple Lie algebras that have been obtained using computations in that system. Concerning reachable elements in simple Lie algebras we show by computational means that the simple Lie algebras of exceptional type have the Panyushev property. We computationally prove two propositions on the dimension of the abelianization of the centralizer of a nilpotent element in simple Lie algebras of exceptional type. Finally we obtain the closure ordering of the orbits in the null cone of the spinor representation of the group \(\mathrm{Spin}_{13}(\mathbb{C})\). All input and output of the relevant \(\mathsf{GAP}\) sessions is given.For the entire collection see [Zbl 1511.20004]. MSC: 17B45 Lie algebras of linear algebraic groups 17B08 Coadjoint orbits; nilpotent varieties 20G05 Representation theory for linear algebraic groups 17-08 Computational methods for problems pertaining to nonassociative rings and algebras Keywords:Lie groups; Lie algebras; nilpotent orbits; computational methods Software:NoCK; GAP; CoReLG; Sophus; LiePRing; FPLSA; SLA; QuaGroup; LieAlgDB; LieRing; HNC PDFBibTeX XMLCite \textit{W. A. de Graaf}, Contemp. Math. 783, 27--46 (2023; Zbl 1526.17032) Full Text: DOI arXiv References: [1] Blanc, Philippe, Cyclic homology and the Selberg principle, J. Funct. Anal., 289-330 (1992) · Zbl 0783.55004 · doi:10.1016/0022-1236(92)90020-J [2] M. Boche’nski, P. Jastrzkebski, A. Szczepkowska, A. Tralle, and A. Woike, NoCK, nock-package for computing obstruction for compact Clifford-Klein forms., Version 1.4, https://pjastr.github.io/NoCK, Oct 2019, Refereed GAP package. [3] Borho, Walter, \"{U}ber Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen, Comment. Math. Helv., 61-104 (1979) · Zbl 0395.14013 · doi:10.1007/BF02566256 [4] Borho, Walter, \"{U}ber Schichten halbeinfacher Lie-Algebren, Invent. Math., 283-317 (1981/82) · Zbl 0484.17004 · doi:10.1007/BF01389016 [5] S. Cical‘o, W. A. de Graaf, and T. GAP Team, LieRing, computing with finitely presented Lie rings, Version 2.4.1, https://gap-packages.github.io/liering/, Feb 2019, Refereed GAP package. [6] S. Cical‘o, W. A. de Graaf, C. Schneider, and T. GAP Team, LieAlgDB, a database of Lie algebras, Version 2.2.1, https://gap-packages.github.io/liealgdb/, Oct 2019, Refereed GAP package. [7] Collingwood, David H., Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, xiv+186 pp. (1993), Van Nostrand Reinhold Co., New York · Zbl 0972.17008 [8] H. Dietrich, P. Faccin, and W. de Graaf, CoReLG, computing with real Lie algebras, Version 1.54, https://gap-packages.github.io/corelg/, Jan 2020, Refereed GAP package. [9] W. A. de Graaf and T. GAP Team, QuaGroup, computations with quantum groups, Version 1.8.2, https://gap-packages.github.io/quagroup/, Oct 2019, Refereed GAP package. [10] W. A. de Graaf and T. GAP Team, SLA, computing with simple Lie algebras, Version 1.5.3, https://gap-packages.github.io/sla/, Nov 2019, Refereed GAP package. [11] Derksen, Harm, Computational invariant theory, Encyclopaedia of Mathematical Sciences, xxii+366 pp. (2015), Springer, Heidelberg · Zbl 1332.13001 · doi:10.1007/978-3-662-48422-7 [12] Elashvili, Alexander G., Classification des \'{e}l\'{e}ments nilpotents compacts des alg\`ebres de Lie simples, C. R. Acad. Sci. Paris S\'{e}r. I Math., 445-447 (1993) · Zbl 0814.17005 [13] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021. [14] V. Gerdt and V. Kornyak, FPLSA, finitely presented Lie algebras, Version 1.2.4, Jan 2019, Refereed GAP package. [15] Willem A. de Graaf, Computations with nilpotent orbits in SLA, 1301.1149, 2013. [16] de Graaf, Willem Adriaan, Computation with linear algebraic groups, Monographs and Research Notes in Mathematics, xiv+327 pp. (2017), CRC Press, Boca Raton, FL · Zbl 1518.14001 · doi:10.1201/9781315120140 [17] Gatti, V., Spinors of \(13\)-dimensional space, Adv. in Math., 137-155 (1978) · Zbl 0429.20043 · doi:10.1016/0001-8708(78)90034-8 [18] de Graaf, W. A., An effective method to compute closure ordering for nilpotent orbits of \(\theta \)-representations, J. Algebra, 38-62 (2012) · Zbl 1317.17011 · doi:10.1016/j.jalgebra.2012.07.040 [19] Hesselink, Wim H., Desingularizations of varieties of nullforms, Invent. Math., 141-163 (1979) · Zbl 0401.14006 · doi:10.1007/BF01390087 [20] Humphreys, James E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, xii+171 pp. (1978), Springer-Verlag, New York-Berlin · Zbl 0447.17001 [21] Igusa, Jun-ichi, A classification of spinors up to dimension twelve, Amer. J. Math., 997-1028 (1970) · Zbl 0217.36203 · doi:10.2307/2373406 [22] Kac, V. G., Some remarks on nilpotent orbits, J. Algebra, 190-213 (1980) · Zbl 0431.17007 · doi:10.1016/0021-8693(80)90141-6 [23] Kraft, Hanspeter, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, x+308 pp. (1984), Friedr. Vieweg & Sohn, Braunschweig · Zbl 0569.14003 · doi:10.1007/978-3-322-83813-1 [24] Lusztig, G., Induced unipotent classes, J. London Math. Soc. (2), 41-52 (1979) · Zbl 0407.20035 · doi:10.1112/jlms/s2-19.1.41 [25] Panyushev, Dmitri I., On reachable elements and the boundary of nilpotent orbits in simple Lie algebras, Bull. Sci. Math., 859-870 (2004) · Zbl 1072.14068 · doi:10.1016/j.bulsci.2004.08.001 [26] Popov, V. L., The cone of Hilbert null forms, Proc. Steklov Inst. Math.. Tr. Mat. Inst. Steklova, 192-209 (2003) [27] Premet, Alexander, Rigid orbits and sheets in reductive Lie algebras over fields of prime characteristic, J. Inst. Math. Jussieu, 583-613 (2018) · Zbl 1429.17020 · doi:10.1017/S1474748016000086 [28] Premet, Alexander, Derived subalgebras of centralisers and finite \(W\)-algebras, Compos. Math., 1485-1548 (2014) · Zbl 1345.17010 · doi:10.1112/S0010437X13007823 [29] C. Schneider and T. GAP Team, Sophus, computing in nilpotent Lie algebras, Version 1.24, https://gap-packages.github.io/sophus/, Apr 2018, Refereed GAP package. [30] M. Vaughan-Lee and B. Eick, LiePRing, database and algorithms for Lie p-rings, Version 1.9.2, https://gap-packages.github.io/liepring/, Oct 2018, Refereed GAP package. [31] Vinberg, \`E. B., Algebraic geometry, 4 (Russian). Invariant theory, Itogi Nauki i Tekhniki, 137-314, 315 (1989), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow [32] Yakimova, Oksana, On the derived algebra of a centraliser, Bull. Sci. Math., 579-587 (2010) · Zbl 1225.17012 · doi:10.1016/j.bulsci.2010.03.005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.